

120

SCSB

60

180

240

PDB-101

300

360

VIRUSES

are faced with a challenge: their genomes need to encode all of their proteins, but at the same time, these genomes need to fit into the tiny space of a viral capsid.

When the first 3D structures of spherical viruses were determined experimentally, researchers discovered this challenge is solved using a modular approach: many identical copies of a small protein subunit are assembled to form a large spherical capsid. The smallest viruses build perfectly symmetrical capsids consisting of 60 copies of a single, small protein, providing enough internal space to hold a tiny genome that encodes only a handful of proteins. Other viruses use one or more types of proteins in quasisymmetrical arrangements to build even larger capsids that enclose larger and more complex genomes.

## The coloring scheme highlights the NUMBER OF PROTEIN CHAINS in each capsid:

480

780

840

Learn more about how these proteins form symmetrical and quasisymmetrical capsids at PDB-101 (pdb101.rcsb.org)

100 111

SCALE:

Explore these viruses in 3D at RCSB PDB (rcsb.org)

420



900 960-8280