

DOE Systems Biology Knowledgebase Review of Crash Course Objectives and Arabidopsis Case Study

Christopher S. Henry

INTEGRATION and MODELING *for* PREDICTIVE BIOLOGY

Office of Biological and Environmental Research

Course Objectives

- **1.Teach those who are new to PDB or KBase a little more about these platforms**
- 2.Highlight new tools that have been added to KBase to enhance connections to PDB
- 3.Demonstrate how these tools can be applied to discover new functions for genes in plant and microbial genomes
- 4. Generally improve audience knowledge in key tools in KBase (modeling, genomics, annotation) and PDB (mol*, structure query, structure alignment)
- 5.Obtain your feedback on the tools we have built so far and your suggestions on what we should build next

Course Outline

- 1. Burley Introduction
- 2. Henry Crash Course Objectives and Arabidopsis Case Study
- **3. Edirisinghe Microbial Case Study Involving Pyridine**
- 4. Piehl Studying Experimental Structures in PDB Arabidopsis resistosome
- 5. Vallat Exploring tools and data in PDB to aid in function discovery
- 6. Dutta Detailed tutorial on visualizing structure data in PDB
- 7. Zhang Overview of all structure tools currently in KBase
- 8. Henry Exploring other information to be gained from PDB tools in KBase and discussing future plans
- 9. Stephen Future plans and concluding remarks

What is KBase?

KBase is an integrated platform for aggregating and sharing tools and data in order to collaboratively solve scientific problems

What is KBase? Data Management

- Unlimited data storage
- Import data by
 - Drag & drop
 - Globus
 - FTP, HTTP, Gdrive, Box/Dropbox
- •File types
 - FASTQ, FASTA, SRA, GenBank, gff, expression matrix, media, phenotype, FBA models

← → C ■ Secure htt	tps://narrative.kbase.us/n	arrative/v	vs.27609.o	bj.1							Ń
KBose Until Create	tled ed by: Paramvir Dehal (psde	ehal) 🖋							?- O- help kernel	Share	
 Analyze 	Narratives		My Data	Shared With Me	Public	Bar	nple		nport Sta	iging (B	eta
V DATA	21 Q H T C	+									1
This Narrative h	as no data yet.	1		Drag and drop data files	(or click) in th	is box to uploar	d them to you	ir staç	ging area.		
				(Still in develop	ment more	unload types w	ill be added s	soon !	r.		
Add I	Data			1300 Therefore		below for help		NPO TRA	27.		
		1									
											J
		Orup	load to this	staging area by using 🕰	Globus Onlin	8					0
		0	' psdehal					Sea	arch:		
		11	Name		34	Size	Modified	17	Import As		17
		D		35334.CCAGTGT-AACAC			21 hours age		Ċ	. 3	
							THE ACT OF		Select a format	-	1
		D	.12042.2.2	35334.CCAGTGT-AACAC	TG.fastq	12.48 KB	21 hours ago	a	Select a format	+ 2	
		D	12074.5.23	35993.ATCTCAG-TATCCT	C.filter-IS	3.58 KB	14 days ago	ř,	Select a format	- 2	1
		B	.12074.5.2	35993.ATCTCAG-TATCC	TC.filter-IS	10.02 KB	14 days ago		Select a format	- 2	1
					سور دروم مسر	3573440					
V APPS	category T Q 💭 R	•	12073.3.23	35898.CAGAGTG-ACACT	CI.nitter-IS	357.34 MB	26 days ago	1	Select a format	- 1	
N 14 5		D	.12073.3.2	35898.CAGAGTG-ACAC	ICT.filter-I	10.09 KB	26 days ago	2	Select a format	- 2	1
 My Favorites Annotation 		2 7 D	83908.ass	embled.fna		203.18 KB	28 days ago	J	Select a format	- 12	i
> Assembly	×.	6 D	02000	sembled.fna.jgi		5.19 KB	20 4	n	-		
> Communities		9	.83908.85	sembled.ma.jgi		5.19 KB	28 days ago	1	Select a format		•
> Comparative Genomics	E	4								Clos	e
> Expression	E	3									
> Metabolic Modeling	5	5									
> Reads		2									
> Sequence	6	4									
Uncategorized	1	2									
> Upload		5									
> Util		8									

What is KBase? **Data Analysis**

- App Catalog
 - •~280 apps
 - Read processing
 - Genome assembly
 - Genome annotation
 - Sequence alignment
 - Comparative genomics
 - Metabolic modeling
 - Expression
 - Microbial communities

Prokke annotate Assembly v1.14.5 v.11.4.5 v.	ssembly
* 61 * 51 * 5389 * 25 * 8077 Image: State of the	a
With DRAM With DRAM Mo_DRAM by michael.shaffer * 16 i * 16 i * 16 i Momentation by donous_park, accimusely, +3 more * 16 i Momentation to the provide theoremains in a Genome DomainAmentation by mic psovidethoo, +1 more * 15 * 13 * 1932 * 13 * 1932 * 13 * 125 RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes With RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes With RASTIK - v1.073 RAST_SDK. RAST Annotate Multiple Microbial Genomes With RASTIK - v1.073 RAST_SDK. RAST Annotate Metagenome Assembly Set - v1.0.1 How set Microbial	a
*16 i *15 i *14 *13 Domains Annotate Domains in a Genome Domain/invotation by mic.parovk/Hov, stringic Prokko Annotate Metagenome Assembly with Prokka - v1.14.5 RAST Annotate Genome/As with RAST is - v1.073 Prokka/endation by debias RAST Annotate Muttiple Microbial Genomes with RAST is - v1.073 (MAST_SOK by during disco RAST Annotate Muttiple Microbial Genomes with RAST is - v1.073 (MAST_SOK by during disco RAST Annotate Muttiple Microbial Assembles with RAST is - v1.073 (MAST_SOK by during disco Annotate Muttiple Microbial (MAST_SOK by during disco Annotate Domains in a Genomes with RAST is - v1.073 (MAST_SOK by during disco Annotate Muttiple Microbial (MAST_SOK by during disco Annotate Domains in a Genomes with RAST is - v1.073 (MAST_SOK by during disco Annotate Muttiple Microbial (MAST_SOK by during disco Annotate Domains in a GenomeSet (MAST_SOK by during disco KB Build AssemblySet - v1.0.1 (MAST_SOK by dism Image discounce (MAST_SOK by during with RAST is - v1.073 (MAST_SOK by during discounce Assembly and Re-annotate Metagenome with RAST is - v1.073 (MAST Annotate Metagenome with RAST is - v1.073 (MAST	a
DomainS DomainS/instance PTOKR with Prokka -v1.14.5 with Prokka -v1.14.5 by mic, panokinkov, nimore by mic, panokinkov, nimore by mic, panokinkov, nimore with Prokka -v1.14.5 trial # 13 # 225 i with Prokka -v1.14.5 with Prokka -v1.14.5 MAST Annotate Multiple Microbial # 13 # 225 i with Prokka -v1.14.5 RAST Annotate Multiple Microbial Genomes with Proking - v1.0073 Prokemins with Prokka -v1.073 RAST Annotate Multiple Microbial Assemblies with RASTIK - v1.073 Prokemins Annotate Domains in a GenomeSet trial # 222 i Prokemins Annotate Domains Annotate Domains trial # 232 i Prokemins Prokemins Prokemins trial # 232 i Prokemins Prokemins Prokemins Prokemins trial # 232 i Prokemins	a
* 13 # 1932 i * 13 # 275 i * 11 # 5 RAST Genomes with RASTIK - v1.073 RAST_SOK by charty, clien Annotate Multiple Microbial Genomes with RASTIK - v1.073 RAST_SOK by charty, clien Annotate Multiple Microbial Assemblies with RASTIK - v1.073 RAST_SOK by charty, clien Annotate Multiple Microbial Assemblies with RASTIK - v1.073 RAST_SOK by charty, clien Annotate Multiple Microbial Assemblies with RASTIK - v1.073 RAST_SOK by charty, clien Annotate Multiple Microbial Assemblies with RASTIK - v1.073 RAST_SOK Dumoins Annotate Plant Enzymes with OrthoFinder by server by cathering type:/// ant Re-annotate Metagenome with RASTIK - v1.073 Annotate Plant Enzymes with OrthoFinder by cathering type:// and Re-annotate Metagenome with RASTIK - v1.073 Batch Create Assembly Set- v1.2.0 Is _Scitutities Dumains Annotate Metagenome with RASTIK - v1.073	
KA1 Genomes with RASTIk - v1.073 RAST_SOK KA1 Assemblies with RASTIk - v1.073 RAST_SOK GenomeSet * 11 # 932 i * 9 # 1202 i i * 11 # 932 i * 9 # 1202 i i K8 Build AssemblySet - v1.0.1 Ita_SetLitaties by spian Annotate Plant Enzymes with OrthoFinder by spian MAN Batch Import Genome Staging Area by spian * 6 # 323 i * 5 * 9 i K8 Annotate Metagenome Assembly and Re-annotate Metagenome with RASTIK - v1.073 K8 Batch Create Assembly Set- v1.2.0 is _scitutions Compare Metabolic Annotations	
KB Build AssemblySet - vI.0.1 Annotate Plant Enzymes with OrthoFinder Data Batch Import Genome Staging Area ★ 6 # 323 i Image: Staging Area Image: Staging Area ★ 6 # 323 i Image: Staging Area Image: Staging Area Annotate Metagenome Assembly and Re-annotate Metagenome with RASTIK - v1.073 Image: Staging Area Image: Staging Area	e from
KB KaSetUltitetrs Controb OrthoFinder MAA Staging Area to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define to define <	e from
* 6 # 323 i * 5 # 95 i * 5 # 191 RAST Annotate Metagenome Assembly and Re-annotate Metagenome with RASTIK - V1.073 KB Batch Create Assembly Set- V1.2.0 Itb SetUtilities Compare Metabolic Arrows Weige Metabolic Arrows by Kindhell, cherry, +Imore	
and Re-annotate Metagenome k8 v1.2.0 kb_scit/hitbes ky/kinket(), theny, +Imore ky/kinket(), theny, +Imore	
DAST SOM	
★4 1 275 i ★4 108 i ★4 1 62	
Import Annotations from Staging MergeMetabalioAnnotations by Kemberlt, driny, +Imore Map DRAM by michael, shalle by michael, shalle by michael, shalle	
★4 ₱165 i ★3 i ★3	

What is KBase? Collaboration

 As users conduct their work within notebooks called "narratives", they can share those narratives with other users

 Users can also gather their "narratives" into "Organizations", or groups of users operating with a common mission in KBase

Crganizations

Search Organ	izations.	Q	170 on
ENIGMA	Ecosystems and Networks Integrated with Genes and Molecular Assemblies SFA Microbial Ecology, Metagenomics, Systems Biology, Microbiology, OMICS, genetics, modeling owner_Adam Paul Arkin	ዲ 10 በ 77	
ନ 🏽 🏠	created Jan 7, 2019		, 7 days ago
KBase	KBase Educators		
-	Using KBase in the classroom and lab	泉 16	
940	owner Zach Crockett created Mar 16, 2020	🕒 59	ep 7, 2022
9 6 7	created war 19, 2020		ip 1, 2022
NI	NC State Elementary Genetics Laboratory Fall 2022		
N	sourdough metagenomics, osmotic stress	氖 34	
	owner Claire L. Gordy	D 47	
0 8	created Sep 26, 2022		days ago
Logo for	Published MAG/SAG genome database		
organization	Open Data. Microbial Ecology, Genomics and Metagenomics.	冬8	
"Published MAG/SAG	owner Sean Jungbluth	[] 43	
genome database"	created Apr 5, 2019	× M	ar 18, 202
0 @ <u>@</u> &			
D	Boca Raton High School		
D	Metagenomics	泉 25	
	owner Jonathan Benskin created May 28, 2020	D 34	4 In 13, 202
0 🖷 💧	created May 25, 2020	(E1 9 G	n 10, 202

What is KBase? Narrative

- Object-oriented list of data entities
- Point and click app panel
- Notebook with analyses and markdown cells
- Buttons to share with users, make public, publish to HTML, write code cells

1a. Explore the Annotated Genome

Below, the M.luteus genome is shown in a genome viewer. This viewer provides a concise, text-based overview of the genome as well as its contigs and genes.

In the Contigs and Features tabs, each entry is clickable, opening either a browser for the contig or another tab with expanded information about the gene. You can sort these entries by clicking on a column header to sort by that field (e.g., Length). Clicking the same column header again will reverse the sort order.

The Muluteus genome has two contigs. Click on one to see neighboring genes and potential operons in this species.

To further explore this genome, click on "Browse Features" tab, where you can search for gene annotations/functions by name (e.g. pyruvate synthase, EC numbers etc.), extract DNA or protein sequences, explore the neigboring genes/gene clusters

P	MLuteus_ATCC_49442 v2 - KBaseGenomes.Genome-10.0		田
L &	Annotate and Distill Genomes with DRAM Annotate MAGs with DRAM and distill resulting annotations to create an interactive functional summary per genome. For		Ð
Prokka	Annotate Assembly and Re-annotate Genomes with Prokka - v1.14.5 Annotate Assembly and Re-annotate Genomes with Prokka annotation pipeline.		Œ
	Output from Annotate Assembly and Re-annotate Genomes with Prokka - v1.14.5	6	a

What is KBase? Documentation

KBase Tutorial Narratives

These Narrative tutorials provide step-by-step examples that show how to use KBase tools and data to perform useful analyses. You can copy these Narratives and rerun the steps, modify the analyses, or try on your own data.

Multi-Omics Modeling Of	Searching For Features	Drafting isolate Genomes	Tutorials
Biochemical Pathways	Genome Analysis in KBase Series	Genome Analysis in KBase Series	KiBase Quickatan 9 General Control of Contro
EMSL Summer School 2021 Learn how to use visualization tools, analysis, and modeling, of multi-omics data for understanding biochemical	focuses on how to use various tools to analyze genomic sequencing data in KBase. This second Narrative demonstrates a workflow for searching and identifying features within	focuses on how to use various tools to analyze genomic sequencing data in KBase. This first Narrative shows how to draft isolate genomes in	KBase App Tutorials DOI: Klass DOI: Klass Vise full playlist Vise All playlist
pathways in this virtual course from EMSL.			Webinars Play all Recorded KBase Webinars since March 2020. Microbial Genomics in KBase web-reduction call and Microbial Genomics in KBase web-reductin call
Course Page →	View Tutorial →	View Tutorial 🔸	Microbial Genomics in KBase Part 1 Management Mark The Upload and Mark The Upload and Ma

KBase

HOME

DOE KBase

VIDEOS

KBase

PLAYLISTS

KBase Quickstart Guide DOE KBase + 3.9K views + 1 year ago

COMMUNITY

CHANNELS

New to REase? This is where to start! Learn about the basics of REase and get on your way to doing advanced science on the REase Platform: Guick Locks: Creating as Account: https://youtu.ber/WKK...

AROU'

774 subacribers

Multiscale Microbial Dynamics Modeling

EMSL Summer School 2020

Learn how to incorporate microbial metagenomic and environmental metabolite data from watershed ecosystems into metabolic and community modeling using computational frameworks in this virtual course.

KBase For Educators

Join the community of educators using KBase to teach bioinformatics and computational biology!

Why KBase?

Made by Ellen Dow

While KBase is routinely used for advanced analysis by scientists around

Assembly And Annotate Prokaryotic Genome Tutorial

Made by the KBase Documentation team

KBase provides multiple Apps for de novo assembly of prokaryotic Next-Generation Sequencing (NGS) reads from various sequencing platforms. These assemblies can then be annotated with RAST or Prokka, enabling you to... Many workflow specific tutorials and hundreds of videos on KBase youtube channel

Subscribed

Why KBase and PDB?

- 1. There is enormous and rapidly growing synergy between KBase and PDB
- 2. KBase contains extensive genomics data, particular non-reference user data
- 3. KBase has numerous workflows to integrate multi-omics data and comparative genomics approaches to predict and understand protein function
- 4. Advances in protein folding now make it possible to easily obtain a predicted structure for proteins of interest discovered in KBase, but what next?
- 5. Here PDB steps in offering a large database of experimental structures to aid in contextualizing new predicted structures generated for genes in KBase
- 6. PDB has a growing body of structure-related tools and data to enable users to actually gain functional insights from structure data

Case study in Arabidopsis...

Stephen Burley John Westbrook

Kelly Skinner

Acknowledgements

estbrook Ed O'loughlin

Jack Gilbert

Special thanks to all those who attended and contributed to our KBase-PDB design workshops!

DOE Systems Biology Knowledgebase Protein Candidates from Function Queries in KBase

Janaka N. Edirisinghe, Ph.D

INTEGRATION and MODELING *for* PREDICTIVE BIOLOGY

RUTGERS

Office of Biological and Environmental Research

Identifying a Novel degradation Pathway with KBase Discovery Pipeline and PDB tools

Scientific Problem

- There are many microbial transformations yet to be characterized. How should we computationally predict potential gene candidates for novel enzymatic transformations?
- How can we effectively use RCSB data in aid in identifying predicted high confidence gene candidates?

Science example: Discover potential novel degradation pathway genes for heteroaromatic compound Pyridine in *Micrococcus letus* using KBase Functional Discovery Pipeline

- Phenotypic data such as biology/growth experiments often show that microbes can degrade certain nutrients, but the degradation pathway is either poorly characterized or unexplained.
- Scientists at ANL identified a *Micrococcus letus* strain that could degrade pyridine, but the pathway was unknown. The degradation pathway wasn't explained until very recently
- We will apply KBase Functional Discovery Pipeline and knowledge that derives from RCSB data to identify potential pyridine degradation enzymes in *M.letus*

Annotation of genomes and constructing metabolic models

Office of Science

DOE Systems Biology Knowledgebase

Introducing new biochemistry in filling metabolic gaps

PickAxe app – Based on biochemical rules can be derived from known biochemistry is used to predict novel or promiscuous enzymatic reactions

PickAxe - Generate novel compounds from reaction rules

Generate novel compounds based enzymatic and spontanios reaction rules

100 -

90 80

70 60

\$ 50

40

30

20

10

401.5962

Office of Science

NERG

DOE Systems Biology Knowledgebase

KBase

Filling gaps in a metabolic network

Discovering genes involved in pyridine degradation Using cheminformatics to predict a novel pathway Metabolic modeling work

Metabolic modeling workflow in KBase is used to predict the most likely pathway, then Escher is used to visualize with flux

8

Linking cheminformatics to genes in the genome

A DickAve Concepts neural common de france reportion nules			
A PickAxe - Generate novel compounds from reaction rules Generate novel compounds based enzymatic and spontanios reaction rules			
		Feature Context	
PyridineNovelReaction v2 - KBaseFBA.FBAModel-14 Overview Reactions		nass Gapfilling Pathways enzc274_c0 🗙	
Show 10 ~ entries			
Reaction	* Name :	Equation	
enzr106[c0]	1.14.13_10_14	2-Pyridone[c0] + O2[c0] + NADH[c0] + H+[c0] =; dihydroxypyridine[c0] + H2O[c0] + NAD[c0] Ontology Terms	
enzr10[c0]	2.1.1_02_3	Pyridine[c0] + S-Adenosyl-L-methionine[c0] => e Location S-Adenosyl-homocysteine[c0] + H+[c0]	
enzri148[c0]	1.14.13_10_136	2,5-Dihydroxypyridine[c0] + O2[c0] + NADH[c0] Feature Context => enzc15800[c0] + H2O[c0] + NAD(c0]	
enzri18[c0]	1.3.1_03;1.3.1_05_1	enzc3[c0] + NAD[c0] => 2,3-dihydroxypyridine[cl NADH[c0] + H+[c0]	
enzr11[c0]	1.14.13_08_1	Pyridine[c0] + O2[c0] + NADH[c0] + H+[c0] => er H2O[c0] + NAD[c0]	
enzr12[c0]	1.14.13_08_2	Pyridine[c0] + O2[c0] + NADH[c0] + H+[c0] => er H2O[c0] + NAD[c0]	
enzr13[c0]	1.14.13_10_3	Pyridine[c0] + O2[c0] + NADH[c0] + H+[c0] => enzc7[c0] + H2O[c0] + NAD[c0]	
enzr[4[c0] 1.3.1_05.rev_3		Pyridine[c0] + NADH[c0] + H+[c0] <=> enzc10[c0] + NAD[c0]	

Тур	e Function	Ontology	
T.CDS.3484 gen	e 1,2-phenylacetyl-CoA epoxidase, subur	nit A ec:1.14.13.149- Phenylacetyl-CoA1,2-epoxidasi	e.
Aldehyde dehydrogena	se (EC1.2.1.3), PaaZ		
None			
3,720,000 3,722,000	3,724,000 3,726,000 3,728,000 3,730,000 3,732,0	00 3,734,000 3,735,000 3,738,000 3,740,004	
ec:1.14.13.149- Phenyl	lacetyl-CoA 1,2-epoxidase.		
3,722,000 3,724,00			unitA
		REGY KBase POE Systems Biology Knowledgebase	
	Office o		
	ST.CDS.3484 ger ST.CDS.3484 ger Aldehyde dehydrogena mail None mail Contig: scf7180000000 3,728,527 - 3,730,639 (3,728,527 - 3,730,639 (3,722,000 3,728,527 - 3,730,639 (3,722,000 1 1 1 2 Contig: scf7180000000 3,722,000 3,728,527 - 3,730,639 (1 1 3,728,527 - 3,730,639 (1 1 4 Contig: scf718000000,3,722,000 1 5 ect.114,13,149 - Pheny 1 6 Contig: scf7180000000,3,730,746 - 3,731,772 1	ST.CDS.3484 gene 1,2-phenylacetyl-CoA epoxidase, subul Aldehyde dehydrogenase (EC 12.1.3), PaaZ None Contig: scf7180000000004 3,728,527 - 3,730,639 (+ Strand) 3,728,527 - 3,730,739 (+ Strand) 3,728,527 - 3,730,74 - 3,731,772 (+ Strand) 3,728,527 - 3,730,74 - 3,731,772 (+ Strand) 3,728,527 - 3,730,639 (- Strand) 3,728,527 - 3,730,639 (- Strand) 3,728,527 - 3,730,649 (- Strand) 3,728,527 - 3,730,74 - 3,731,772 (+ Strand) 3,728,527 - 3,730,649 (- Strand)	STLCD:5.3484 gene 1,2-phenylacetyl-CoA epoxidase, subunit A ec1.14.13.149- Phenylacetyl-CoA 1,2-epoxidase Adehyde dehydrogenase (EC 1.2.13), PaaZ

Structure prediction and analysis on selected gene candidates by the PDB team – example gene: CDS. 3483

- Query experimentally resolved structures that are corresponding to the potential gene candidates
- Query and learn from co-crystalized structures with the docking of the substrat
- Align experimental and computational structures to aid binding site identification and functional characterization

Stephen Burley John Westbrook

Kelly Skinner

Acknowledgements

estbrook Ed O'loughlin

Jack Gilbert

Special thanks to all those who attended and contributed to our KBase-PDB design workshops!

rcsb.org

Accessing Experimental Structures from the PDB

Dennis Piehl, Ph.D., RCSB PDB/Rutgers

Outline

- Introduction to the PDB Archive and RCSB PDB
- Overview of search tools
- Overview of download services and structure data format
- Tutorial: Accessing data from RCSB.org
 - Case study: Arabidopsis thaliana resistosome
 - \circ $\,$ Searching and browsing
 - Structure summary pages
 - Downloading data
 - Programmatic access (searching and downloading)
- Additional resources and documentation

History of the Protein Data Bank (PDB)

- Established in 1971 as the first open-access digital data resource in biology, with just seven protein structures
- Now hosts >190,000 experimental 3D structures of biomolecules, deposited by researchers worldwide
- The PDB Core Archive is jointly managed by the Worldwide PDB (wwPDB), comprised of the RCSB PDB (U.S.), PDBe (Europe), PDBj (Japan), BMRB (U.S./Japan), and EMDB (Europe)
- Committed to making PDB data "FAIR" (Findable, Accessible, Interoperable, & Reusable); all data is made freely available to the public

Protein Data Bank (1971) *Nature New Biology* **233**, 223. Worldwide Protein Data Bank (2019) *Nucleic Acids Research* **47**, D520–D528. 3D structural data from around the world

The RCSB PDB Web Portal (RCSB.org)

- **RCSB.org:** Tools for searching, visualizing, analyzing and downloading the contents of the PDB Archive
- Integration of PDB Archive data with annotations from ~50 external data resources (UniProt, SCOPe, CATH, ...)
- Recently introduced tools and features:
 - Protein 1D-3D Feature View
 - Groups 1D-3D Alignment View
 - Integration of Computed Structure Models (CSMs)
- **PDB-101 (pdb101.rcsb.org):** Educational resources and training

RCSB Protein Data Bank (2022) Protein Science 31, 187–208.

3D structural data from around the world

Search Tools at RCSB.org

RCSB PDB Deposit - Search - Visualize - And	alyze - Download - Learn - More - Documentation - Careers	MyPDB - Contact us	
PROTEIN DATA BANK	→ 3D Structures Enter search term(s), Entry ID(s), or sequence	nclude CSM @ 🕥 Q Help	Basic search
PDB-101 OPDB SEMDataResource	BETREASE WWPDB	E V DO	
Search Query History Browse Annotations	МуРОВ		
QUERY: Scientific Name of the Source Organism HAS EXACT PHRAS	E *Arabidopsis thaliana*	JSON MyPDB Login	
- Advanced Search Query Builder @		Help	
✓ Full Text			
Structure Attributes		Help	
Scientific Name of the Source Orga	nism x 🔹 🕈 has exact phrase 🗸 Arabidopsis thaliana	+ NOT Count ×	
Add Attribute Add Subquery		Remove Subquery	
Add Subquery			
- Chemical Attributes		A	dvanced search
Sequence Similarity			
Sequence Motif			
Structure Similarity			
▼ Structure Motif @			
Chemical Similarity			
Return Structures V 🕑 grouped by No Grouping	V Ø Include Computed Structure Models (CSM) Ø	Count Clear Q Search	

Search Tools at RCSB.org

RCSB PDB Deposit - Search - Visualize - An	nalyze + Download + Learn + More + Documentation + Careers	MyPDB - Contact us	
PROTEIN DATA BANK	✓ 3D Structures	Include CSM @ D Q Help	 Basic search
PDB-101 OPDB PMDataResource	WELER ACID WWPDB	EV DO	
Search Query History Browse Annotations QUERY: Scientific Name of the Source Organism HAS EXACT PHRAS - Advanced Search Query Builder @	MyPDB SE *Arabidopsis thaliana*	JSON MyPDB Login Help	Search API (<u>search.rcsb.org</u>)
▼ Full Text 🚱			
Structure Attributes		Help	
Scientific Name of the Source Org	anism x 👻 🕈 has exact phrase 🗸 Arabidopsis thaliana	+ NOT Count ×	
Add Attribute Add Subquery		Remove Subquery	
Add Subquery			
			Advanced search
Sequence Similarity			
✓ Sequence Motif			
Structure Similarity			
Structure Motif			
Chemical Similarity			
Return Structures - O grouped by No Grouping	Include Computed Structure Models (CSM) Include Computed Structure Models (CSM)	Count Clear Q Search	

Advanced Search Tools at RCSB.org

Search API at RCSB.org

🗧 🔶 C 🔒 search.rcsb.org/query-editor.html?json=%7B"query"%3A%7B"type"%3A"terminal"%2C"label"%3A"text"%2C"service"%3A"text"%2C"parameters"... 🖞 🚖

```
RCSB PDB: Search API Query Editor
                                   νĒ
                                       =
                                            5
                                                0
 1 - {
                                                                              - {
 2.
      "auery": {
                                                                                   "query_id": "330fcd0f-62c0-4b9e-a710-fbe40c9c93d7".
                                                                                   "result_type": "entry",
 3
        "type": "terminal",
        "label": "text",
                                                                                   "total_count": 1879,
 4
 5
        "service": "text".
                                                                                   "result_set": [
 6 -
        "parameters": {
 7
        "attribute": "rcsb_entity_source_organism.ncbi_scientific_name",
                                                                                       "identifier": "7AR8".
         "operator": "contains_phrase",
 8
                                                                                       "score": 1
 9
        "negation": false,
                                                                                     },
10
          "value": "Arabidopsis thaliana"
11
        3
                                                                                       "identifier": "7ARB".
12
                                                                                       "score": 1
      },
      "return_type": "entry",
13
                                                                                     },
      "request_options": {
14 -
15 .
        "paginate": {
                                                                                       "identifier": "6XYW",
16
         "start": 0,
                                                                                       "score": 0.93261934140986
         "rows": 25
17
18
        },
19+
        "results_content_type": [
                                                                                       "identifier": "7AR7",
          "experimental"
20
                                                                                       "score": 0.843479411762288
        ],
                                                                                     3,
22 .
        "sort": [
23 +
          {
                                                                                       "identifier": "7WG5",
24
            "sort_by": "score",
                                                                                       "score": 0.7614635080689911
25
            "direction": "desc"
                                                                                     },
26
          }
27
                                                                                       "identifier": "70UI",
28
        "scoring_strategy": "combined"
                                                                                       "score": 0.7074923938322015
29
                                                                                     3.
30 }
                                                                                       "identifier": "7AQQ",
```


Download Services

- While browsing RCSB.org:
 - Structure summary pages (i.e., structure entry pages)
 - Search results page
 - Bulk download page (<u>https://www.rcsb.org/downloads</u>)
- PDB Archive:
 - Over HTTP (via direct navigation on browser or programmatic access):
 *Structure data under the directory: /pub/pdb/data/structures/divided/mmCIF/
 - https://s3.rcsb.org
 - <u>https://files.rcsb.org</u> (supports recursive directory retrieval)
 - Can use command-line/scripting tools (e.g., curl, wget, or Python)
 - Using rsync: rsync://rsync.rcsb.org
 - Using FTP: ftp://ftp.wwpdb.org

Structure Data Format: PDBx/mmCIF

- PDBx/mmCIF Data Standard (<u>https://mmcif.wwpdb.org/</u>)
 - Became the standard file format for data in the PDB Archive in 2014
 - Files are given the extension ".cif" (or ".cif.gz")
 - Supersedes the now legacy "PDB" (".pdb") file format, which is limited by fixed-column width restrictions and is no longer extended to support new types of metadata

Display Files - O Download Files -	data_6J5T
FASTA Sequence	entry.id 6J5T # audit conform.dict name mmcif pdbx.dic
PDBx/mmCIF Format PDBx/mmCIF Format (gz)	<pre>_audit_conform.dict_version 5.303 _audit_conform.dict_location http://mmcif.pdb.org/dictionaries/ascii/mmcif_pdbx.dic # loop_ _database_2.database_id _database_2.database_code</pre>
PDB Format < Legacy PDB Format (gz)	PDB 6J5T WWPDB D_1300010525 EMDB EMD-0680 # pdbx_database_related.db_name EMDB pdbx_database_related.details 'Reconstitution and structure of a plant NLR resistosome conferring immunity'
PDBML/XML Format (gz)	_pdbx_database_related.db_id EMD-0680 _pdbx_database_related.content_type 'associated EM volume' #

Case study: Arabidopsis thaliana resistosome

- *Arabidopsis thaliana*: the gold standard model organism in plant molecular biology
- In plants, the innate immune response is triggered via the sensing of pathogens by nucleotide-binding, leucine-rich repeat receptors (NLRs)
- Upon pathogen sensing, NLRs oligomerize to form the activated "resistosome"
- Ultimately, this process culminates in programmed cell death

Wang, J., et al. (2019) Science 364(6435), eaav5870.

A. thaliana resistosome PDB 6J5T (Wang 2019)

Case study: Arabidopsis thaliana resistosome

Shi, X., et al. (2019) *Abiotech* **1**(2), 147–150.

Case study: Arabidopsis thaliana resistosome

Burdett, H., et al. (2019) *Cell Host & Microbe* **26**(2), 193–201. Wang, J., et al. (2019) *Science* **364**(6435), eaav5870.

Tutorial: Accessing structure data in the PDB

Burdett, H., et al. (2019) *Cell Host & Microbe* **26**(2), 193–201. Wang, J., et al. (2019) *Science* **364**(6435), eaav5870.

Tutorial: Accessing structure data in the PDB

Burdett, H., et al. (2019) *Cell Host & Microbe* **26**(2), 193–201. Wang, J., et al. (2019) *Science* **364**(6435), eaav5870.

Tutorial: Accessing structure data in the PDB

Tutorial time

Summary: Accessing structure data in the PDB

- Interactive access (i.e., while browsing RCSB.org):
 - Search data with "Basic" and "Advanced" search tools (<u>https://www.rcsb.org/search/advanced</u>)
 - Download data via:
 - Structure summary pages
 - Search results page
 - Direct navigation of the PDB Archive at <u>https://s3.rcsb.org</u> or <u>https://files.rcsb.org</u>
 - Structure data under the directory: /pub/pdb/data/structures/divided/mmCIF/
- Programmatic access:
 - Search data with our Search API (try the query editor: <u>https://search.rcsb.org/query-editor.html</u>)
 - Download data via command-line/scripted access of the PDB Archive
 - Over HTTP (e.g., using curl, wget, or Python):
 - <u>https://s3.rcsb.org</u>
 - <u>https://files.rcsb.org</u> (supports recursive directory retrieval)
 - Using rsync: rsync://rsync.rcsb.org
 - Using FTP: ftp://ftp.wwpdb.org

Resources and Documentation

- Basic and advanced searching:
 - Infographic: https://cdn.rcsb.org/rcsb-pdb/search/SearchnBrowse2go.pdf
 - <u>https://www.rcsb.org/docs/search-and-browse/overview-search-and-browse</u>
- Programmatic access:
 - Search API: <u>https://search.rcsb.org/index.html#search-api</u>
 - Downloading structures:
 - <u>https://www.rcsb.org/docs/programmatic-access/file-download-services</u>
 - https://www.wwpdb.org/ftp/pdb-ftp-sites
 - AWS S3: <u>https://www.rcsb.org/news/6266e0379c3931864b072861</u>
 - https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-script

Questions?

Funding

National Science Foundation (DBI-1832184), National Institute of General Medical Sciences, National Institute of Allergy and Infectious Disease, and National Cancer Institute (NIH R01GM133198), and the US Department of Energy (DE-SC0019749)

Management

RUTGERS

UC San Diego

SDSC SAN DIEGO

Member of the Worldwide Protein Data Bank (wwPDB; wwpdb.org)

Follow us

John D. Westbrook

In memoriam

1957-2021

rcsb.org

Accessing Computed Structure Models Generated Using AlphaFold2 and RoseTTAFold

DOE KBASE/RCSB PDB VIRTUAL CRASH COURSE NOVEMBER 10, 2022

Brinda Vallat, Ph.D., RCSB PDB/Rutgers brinda.vallat@rcsb.org

Outline

- What are computed structure models (CSMs)?
 - Protein structure prediction
 - AlphaFold2 and RoseTTAFold
 - AlphaFoldDB and ModelArchive
 - Model quality metrics
 - ModelCIF data standard
- CSMs in RCSB.org
- Accessing CSMs on RCSB.org
 - Live demo: RCSB.org tools and functionalities
 - Case studies: Disease resistance RPP13-like protein 4 from Arabidopsis thaliana resistosome and Micrococcus luteus aldehyde dehydrogenase

What are computed structure models?

Protein structure prediction

ased

modeling

-04 **Residue Pair Assembly** KH3 Domain low confidence high confidence

Template-fr ee modeling

Baker, D., Sali, A. Science. 2001. 294, 93-6; Abriata, L.A., et al., Proteins. 2018. 86 Suppl 1, 97-112 https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/computed-structure-models

Computed structure models (CSMs) are predicted models obtained using template-based or template-free modeling methods

AlphaFold2 and RoseTTAFold

- AlphaFold2 and RoseTTAFold are artificial intelligence / machine learning (AI/ML) methods that predict a protein's 3D structure from its amino acid sequence
- AlphaFold2 is developed by Google Deepmind
 - Achieves accuracy comparable to low resolution experimental structures
- RoseTTAFold is developed by HHMI investigator David Baker and his team at the University of Washington
 - Prediction accuracies approach that of AlphaFold2
- These prediction methods were trained using thousands of sequences and structures of known proteins from the PDB
- PDB data is the primary input for training these AI/ML prediction methods

AlphaFold Protein Structure Database and ModelArchive

- AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk) provides open access to AlphaFold2 predictions
 - Hosted at the European Bioinformatics Institute (EBI)
 - Includes >200 million protein structure predictions, providing a broad structural coverage of sequences in UniProt
- ModelArchive (https://www.modelarchive.org) is a repository for CSMs referenced in publications
 - Hosted at the Swiss Institute of Bioinformatics (SIB)
 - Includes predictions of core eukaryotic heteromeric protein complexes modeled using a combination of RoseTTAFold and AlphaFold2

Varadi, M., et al. Nucleic Acids Res. 2022. 50, D439–D444 UniProt Consortium. Nucleic Acids Res. 2021. 49, D480-D489 Humpheys, I.R., et al. Science. 2021. 374, eabm4805

Model quality metrics

Scored residue

Two types of intrinsic model accuracy estimates:

- pLDDT: per-residue
 measure of local
 confidence on a scale from
 0 100
- PAE: expected position error at residue x, when the predicted and true structures are aligned on residue y

Jumper, J., et al. Nature. 2021. 596, 583–589 Tunyasuvunakool, K., et al. Nature. 2021. 596, 590-6 https://www.deepmind.com/publications/enabling-high-accuracy-p rotein-structure-prediction-at-the-proteome-scale

ModelCIF Data Standard

- Extension of PDBx/mmCIF for CSMs
- Definitions retained from PDBx/mmCIF
 - Representation of small molecules, polymeric macromolecules, complexes, atomic coordinates and relevant metadata (e.g., authors, citations, software)
- New definitions in ModelCIF
 - Targets, templates, alignments, coevolution data, predicted contacts, model quality metrics
- Publicly available via GitHub: github.com/ihmwg/ModelCIF
- Managed by the wwPDB ModelCIF working group: wwpdb.org/task/modelcif
- Supported by AlphaFoldDB and the ModelArchive

CSMs in RCSB.org

CSMs in RCSB.org

- RCSB.org now delivers >1,000,000 CSMs together with ~200,000 experimental structures
- Made possible because ModelCIF extension of PDBx/mmCIF facilitates interoperation with PDB data
- Motivation in integrating CSMs:
 - Ameliorates the paucity of experimental 3D structures in the PDB
 - Improves structural coverage of proteomes of interest
 - Extensive set of tools and services provided by RCSB.org can be used to search, analyze, and visualize CSMs alongside experimentally-determined PDB structures

https://www.rcsb.org/docs/general-help/computed-structure-models-and-rcsborg https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/computed-structure-models

CSMs in RCSB.org

- CSMs are consistently distinguished from experimental structures through source-specific icons and unique coloring schemes
- Provenance information about the CSMs are clearly provided

₫

Experimental Structures

CSMs in RCSB.org: AlphaFold2 and RoseTTAFold

- Pre-packaged collection of 999,255 CSMs from AlphaFoldDB (v3)
 - Model organism proteomes: Proteomes from 48 different model organisms e.g., Arabidopsis, *E. coli*, fruit fly, human, soybean, and zebrafish
 - Global health proteomes: Proteomes of disease-causing organisms, e.g., *H. pylori*, *K. pneumoniae*, *M. tuberculosis*, and *P. falciparum*
 - Swiss-Prot sequences
 - MANE (Matched Annotation from NCBI and EMBL-EBI) Select sequences
- RoseTTAFold CSMs from the ModelArchive
 - Computed structures of core eukaryotic protein complexes produced by the Baker lab computed using a combination of RoseTTAFold and AlphaFold2
 - Set of 1,106 heteromeric complexes archived in the ModelArchive (https://modelarchive.org/doi/10.5452/ma-bak-cepc)

Humpheys, I.R., et al. Science. 2021. 374, eabm4805 Baek, M., et al. Science. 2021. 373, 871-876 https://www.modelarchive.org/ Jumper, J., et al. Nature. 2021. 596, 583–589 Varadi, M., et al. Nucleic Acids Research. 2022. 50, D439–D444

Summary

- RCSB.org now provides access to >1,000,000 CSMs from AlphaFold2 and RoseTTAFold alongside ~200,000 experimental structures of macromolecules
- Various search, analysis and visualization tools on RCSB.org facilitate the study of CSMs together with the experimental structures to obtain additional structural and functional insights
- Depending upon the scientific question being investigated and the data available to address the question, different search and analysis strategies can be devised

Funding

National Science Foundation (DBI-1832184), National Institute of General Medical Sciences, National Institute of Allergy and Infectious Disease, and National Cancer Institute (NIH R01GM133198), and the US Department of Energy (DE-SC0019749)

Management

RUTGERS

UC San Diego

SDSC SAN DIEGO

Member of the Worldwide Protein Data Bank (wwPDB; wwpdb.org)

Follow us

John D. Westbrook In memoriam 1957-2021

Thank you!

rcsb.org

Introduction to the Mol* Molecular Graphics System

Shuchismita Dutta, Ph.D., RCSB PDB/Rutgers shuchi.dutta@rcsb.org

Overview

- Exploring a 3D structure from RCSB.org using Mol*
- Standalone Mol*
- Exploring and Comparing multiple 3D structures using Mol*

Overview

- Exploring a 3D structure from RCSB.org using Mol*
 - Overall structure
 - Focus vs Select
 - Display and Color
 - Measure
 - Explore Annotations (1D-3D viewer)
- Standalone Mol*
- Exploring and Comparing multiple 3D structures using Mol*

Overall Structure (Access from Structure Summary Page \rightarrow 3D View)

										(AT)	Ales	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
					Residu	e et	o 0	•	. 0	- 6	40	0 0	
					Add Con	nponent						×	
Salaat ta Di	ionlow and	Color				Selection Current Selection							
Select to Di	isplay and					Representation < Create Later >							
-		< Cre	Create Later >										
Atom/Coarse Element	Residue	(X) Carto	Cartoon										
Residue Chain Entity Model Operator Structure/Shape Atom/Coarse Element Instances Residue Instances Chain Instances Chain Instances			Backbone										
	Add/Union Selection		Ball & Stick										
	All					Gaussian Surface							
	Polymer/Carbohydrate Entities					Gaussian Volume							
						Label							
	 Ligand/Non-standard Residue 					Molecular Surface							
	▶ Туре					Orientation							
	Structure Property					Point							
	Bond Property Theme					Putty Options							
	Residue Property	Selection		+ Create Component									
		Action	Action Color										
	Manipulate Selection	Color											
	Amino Acid												
	Nucleic Base												
	Validation	RGB	0	0	255								
	Element Symbol	Lig	Darke	en									
	Helpers	Representati											
				Apply Theme									

Measure

- 1. Select atom(s) on 3D Canvas
- 2. Measurements \rightarrow +Add
- 3. Select options to measure distance, angle, torsion

Explore Annotations (1D-3D View)

Overview

- Exploring a 3D structure from RCSB.org using Mol*
- Standalone Mol* (<u>https://www.rcsb.org/3d-view</u>)
 - Upload your coordinates
 - Compare structures
- Exploring and Comparing multiple 3D structures using Mol*

Compare Structures

Overview

- Exploring a 3D structure from RCSB.org using Mol*
- Standalone Mol*
- Exploring and Comparing multiple 3D structures using Mol*
 - View 1D-3D Alignments

View 1D-3D Alignments

Case Study: Arabidopsis thaliana **Resistosome**

• Which is the Disease resistance RPP13-like protein 4?

• What proteins does it interact with?

• What ligands does it interact with?

• Mutations @ 297 vs 359?

PDB 6J5T (Wang 2019)

Exploring: Arabidopsis thaliana Resistosome

- Which is the Disease resistance RPP13-like protein 4?
 - Structure Summary Page
- What proteins does it interact with?
 - 1D-3D viewer
- What ligands does it interact with?
 - 1D-3D viewer, Mol*
- Mutations @ 297 vs 359?
 - 1D-3D viewer
- How do other (experimental/CSM) structures of this protein compare with this structure
 - View 1D-3D Alignments
 - Pairwise alignment tool

PDB 6J5T (Wang 2019)

Summary

- Exploring a 3D structure from RCSB.org using Mol*
 - Overall structure
 - Focus vs Select
 - Display and Color
 - Measure
 - Explore Annotations (1D-3D viewer)
- Standalone Mol*
 - Upload your coordinates
 - Compare structures
- Exploring and Comparing multiple 3D structures using Mol*
 - View 1D-3D Alignments

Funding

National Science Foundation (DBI-1832184), National Institute of General Medical Sciences, National Institute of Allergy and Infectious Disease, and National Cancer Institute (NIH R01GM133198), and the US Department of Energy (DE-SC0019749)

Management

RUTGERS

UC San Diego

SDSC SAN DIEGO

Member of the Worldwide Protein Data Bank (wwPDB; wwpdb.org)

Follow us

John D. Westbrook

In memoriam

1957-2021

INTEGRATION and MODELING *for* PREDICTIVE BIOLOGY

DOE Systems Biology Knowledgebase

KBase Apps for Protein Structure Data Communication and Integration with RCSB PDB

(DOE/KBase/RCSB PDB) Virtual Crash Course, Nov.10, 2022

Qizhi Zhang, PhD, KBase/Argonne National Laboratory

Office of Biological and Environmental Research

Introducing 4 KBase Apps interfacing with RCSB PDB

- Import ProteinStructures from a Metadata File in Staging Area
- Query RCSB databases for protein structures
- PDB Import PDB Metadata into KBase Genome
- Import RCSB Structures (to associate with KBase genomic data objects)

Demo Narrative: https://narrative.kbase.us/narrative/130799

Import ProteinStructures from a Metadata File in Staging Area

DATA Import ProteinStructures from a Metadata File in Staging Area Import a set of PDBs from your staging area into your narrative into a ProteinStructures				
Run				
Parameters				
Metadata File Path				
Output Objects				
ProteinStructures name	uploaded_proteinstructures			

Narrative ID	Object name (Genome AMA feature set)	Feature ID	PDB filename	Is mode
107138	MLuteus_ATCC_49442	MLuteus_masurca_RAST.CDS.3483	MLuteus_AlphaFold_3483.pdb	yes
107138	MLuteus_ATCC_49442	MLuteus_masurca_RAST.CDS.3484	MLuteus_Alphafold_3484.pdb	yes
107138	MLuteus_ATCC_49442	MLuteus_masurca_RAST.CDS.133	pdb_extract_MLuteus_133.cif	yes
107138	MLuteus_ATCC_49442	MLuteus_masurca_RAST.CDS.133	ma-bak-cepc-0245.cif	yes
107138	MLuteus_ATCC_49442	MLuteus_masurca_RAST.CDS.133	vinaoutNtarget_133.pdb	yes

Purpose: With your own protein structure files, you can link them with KBase genome data that is in your narratives or shared with you. Given certain sequence similarity threshold, annotation data of structures and genes that satisfy the threshold will be uploaded (saved) to KBase as an object of the type of ProteinStructures.

Query RCSB databases for protein structures

Purpose: By specifying query filters, you can search the RCSB database to find structure hits that meet the criteria you give.

DATA Query RCSB databases for prof Given a json format query constraint, que	tein structures	• • •
Run	Configure (info) Job Status	Result
Parameters		
Proten Sequences	MAVQNLQSVTAELSPEELDAAARRDAEGQANFDRVIADDSRIEPKDWMPAAYRKTLLRQISQHAHSEIIGMQPEANWISRAPSUKRKAILMAKVQDEAGHGLYLYSAAETLGQSRDEMMDAUAGKARYSSIRVYPARTWADMGAIGW	×
	•	
Uniprot IDs	P7607	×
	0	-
EC Numbers	114.13.149	×
	0	
InChi codes	0	
SMILES codes	0	
Logical AND Operator		
Evalue Cutoff	1e-10	
Identity Cutoff	0.75	\$1

PDB - Import PDB Metadata into KBase Genome

PDB - Import PDB Metadata into KBase Genome Queries PDB API with genome proteins and annotates proteins with associated PDB metadata			
Reset Finished with success at Nov 8, 202	2 at 5:41pm		
Input Objects			
Genome	Athaliana_TAIR10_2012		
Parameters			
Suffix for annotated genomes	.pdb		
Similarity threshold type	E-value		
Similarity thrachold			

Import RCSB Structures

Purpose: Of the RCSB query structure hits, after examining the result metadata, the user can choose a subset of those structures (in RCSB IDs) and associate them with KBase genome data by using this app.

Reset Finished with succes	s at Nov 7, 2022 at 2:15pm	View Configure Info	Job Status Resul
Parameters			
nfo for RCSBs to be Imported	RCSB ID	6TUK	
	RCSB file extension	pdb	~
	Narrative ID	107138	
	Genome name	MLuteus_ATCC_49442	
	Feature ID	MLuteus_masurca_RAST.CDS.133	
	is Model		
	RCSB ID	3LXD	
	RCSB file extension	pdb	~

Demo in a KBase Narrative:

https://narrative.kbase.us/narrative/130799

Todo next...

- 1. Add viewer for the KBase ProteinStructures datatype
- 2. More RCSB PDB query features and tools (e.g., Docking/Alignment)
- 3. Better differentiation of experimental from computational structures (source-specific icon, provenance info, RCSB ids)
- 4. Search results into sets of KBase data objects
- 5. Other Suggestions?

8

INTEGRATION and MODELING *for* PREDICTIVE BIOLOGY

DOE Systems Biology Knowledgebase Making the Best use of Protein Structure Data in KBase and PDB

Christopher S. Henry

November 10th, 2022

RUTGERS

Argonne

Office of Science

Office of Biological and Environmental Research

Review of PDB-KBase Workflows

- 1. Using gene function discovery pipelines to identify candidate genes for functions of interest
 - Candidates could be proposed from gapfilling, pathway prediction, annotation apps, alignments, blast and many other algorithms in KBase
- 2. Pulling closest experimental structures associated with candidate genes from PDB
- 3. Exporting candidate genes as FASTA, generating structures in google collab, and importing computational structures back into KBase or query and analyze structures in PDB
- 4. Using PDB query and import app to also pull structures with desired functions or substrates cocrystalized
- 5. Aligning computational and experimental structures in the PDB site
- 6. Comparing PDB complexes and cocrystalized ligands with complexes and reaction substrates in models
- 7. Applying Import PDB Metadata app to determine extent of structure coverage of genome, identify gaps in structure coverage, test for existing and completeness of protein complexes, import PDB/uniprot data on annotation and co-crystalization, and identify structures of interest for deeper analysis.

Future plans for KBase PDB apps

- 1. Mol* viewer in KBase
 - Currently only available on upload adding a widget to view any time
 - Enabling painting of other data in KBase on structure views (e.g. sequence alignments, variation, domains, docking, annotations, fold quality)
 - Integrating more mol* functionality into KBase
- 2. PDB Query app
 - Enabling query by feature ID in KBase objects (genome, feature set, metagenome) rather than copying and pasting sequence
 - Saving query output in KBase with annotations as protein sequence set
 - Enabling query by structure alignment
- 3. Structure import
 - Expanding import to include computational structures from PDB and other databases
- 4. Docking
 - Linking KBase autodock-VINA app to new structure datatype and enabling saving of docked poses for future viewing

Future plans for New PDB apps

- 1. Links to modeling
 - a. Comparing all model complexes to complex data in structures
 - b. Comparing reaction substrate to cocrystalized ligands and annotated models with co-enzyme data (e.g. PLP)
- 2. Structural alignment
 - a. <u>Mitchell and Sedova team at ORNL are adding tools</u> for structure alignment
- 3. Experimental/computational structures
 - a. Enabling automated linking of imported computational structures to closest experimental structures and facilitating rapid alignment of these pairs
- 4. Adding one or more computational structure prediction apps in KBase
- 5. Other ideas?

Stephen Burley John Westbrook

Kelly Skinner

Acknowledgements

estbrook Ed O'loughlin

Jack Gilbert

Sam Seaver Claudia Lerma-Ortiz Nidhi Gupta We thanks DOE BER for funding this work!

Special thanks to all those who attended and contributed to our KBase-PDB design workshops!

KBase team

