The Protein Data Bank (PDB) is the single global archive of 3D macromolecular structure data, providing compelling views of biological systems. From tools for drug discovery to understanding the impact of genomic mutations on 3D protein structure, RCSB PDB scientists and computer programmers are working to enable researchers around the world to harness the power of the data in the PDB archive. Together with Director Emerita Helen M. Berman, the entire RCSB PDB staff, and our Advisory Committee, I am committed to making data freely available since 1971, estimated to be more than US$13 billion. The value of the entire PDB archive is conservatively estimated to be more than US$13 billion. Today, the PDB safeguards structure data for more than 125,000 experimentally studied proteins and nucleic acids, and provides atomic level views of many of the diverse organisms and viruses. PDB has been essential to basic and applied research and education (2015) views of structural biology for various experimental techniques. These results are made freely available at the PDB, develops resources that offer rich structural validation of PDB data. Additionally, RCSB PDB manages data made freely available by the Protein Data Bank (PDB). 3D structures are made freely available with just 7 structures. On January 1st 2017, the archive was recognized by the Protein Data Bank (PDB). 3D structures were added to the public archive. Together with Director Emerita Helen M. Berman, the entire RCSB PDB staff, and our Advisory Committee, I am committed to making data freely available since 1971, estimated to be more than US$13 billion. The value of the entire PDB archive is conservatively estimated to be more than US$13 billion. Today, the PDB safeguards structure data for more than 125,000 experimentally studied proteins and nucleic acids, and provides atomic level views of many of the diverse organisms and viruses. PDB has been essential to basic and applied research and education (2015) views of structural biology for various experimental techniques. These results are made freely available at the PDB, develops resources that offer rich structural validation of PDB data. Additionally, RCSB PDB manages data made freely available by the Protein Data Bank (PDB). 3D structures are made freely available with just 7 structures. On January 1st 2017, the archive was recognized by the Protein Data Bank (PDB). 3D structures were added to the public archive. The RCSB PDB team focuses on developing tools and best practices for biocuration and making data freely available since 1971, estimated to be more than US$13 billion. The value of the entire PDB archive is conservatively estimated to be more than US$13 billion. Today, the PDB safeguards structure data for more than 125,000 experimentally studied proteins and nucleic acids, and provides atomic level views of many of the diverse organisms and viruses. PDB has been essential to basic and applied research and education (2015) views of structural biology for various experimental techniques. These results are made freely available at the PDB, develops resources that offer rich structural validation of PDB data. Additionally, RCSB PDB manages data made freely available by the Protein Data Bank (PDB). 3D structures are made freely available with just 7 structures. On January 1st 2017, the archive was recognized by the Protein Data Bank (PDB). 3D structures were added to the public archive. The RCSB PDB team focuses on developing tools and best practices for biocuration and making data freely available since 1971, estimated to be more than US$13 billion. The value of the entire PDB archive is conservatively estimated to be more than US$13 billion. Today, the PDB safeguards structure data for more than 125,000 experimentally studied proteins and nucleic acids, and provides atomic level views of many of the diverse organisms and viruses. PDB has been essential to basic and applied research and education (2015) views of structural biology for various experimental techniques. These results are made freely available at the PDB, develops resources that offer rich structural validation of PDB data. Additionally, RCSB PDB manages data made freely available by the Protein Data Bank (PDB). 3D structures are made freely available with just 7 structures. On January 1st 2017, the archive was recognized by the Protein Data Bank (PDB). 3D structures were added to the public archive.
The Protein Data Bank (PDB) is the single global archive of 3D macromolecular structure data, providing compelling atomic level views of many of the diverse molecular machines found in living organisms and viruses. PDB has been making data freely available since 1971, when it was established as the first open access digital data resource in biology with just 7 protein structures.

Today, the PDB safeguards structure data for more than 125,000 experimentally studied proteins and nucleic acids, and provides unrestricted access for more than 1 million researchers, educators, and students around the world. More than 1.5 million structure data files are downloaded over the Internet by our Users each and every day. The replacement value of the entire PDB archive is conservatively estimated to be more than US$13 billion.

This powerful resource is jointly managed by the Worldwide Protein Data Bank organization, within which the RCSB PDB is responsible for US PDB operations.

The RCSB PDB team focuses on developing tools and best practices for biocuration and validation of PDB data. Additionally, RCSB PDB develops resources that offer rich structural views of biological systems. From tools for drug discovery to understanding the impact of genomic mutations on 3D protein structure and function, RCSB PDB scientists and computer programmers are working to enable research breakthroughs and leverage the power of the data in the PDB archive.

Together with Director Emerita Helen M. Berman, the entire RCSB PDB staff, and our Advisory Committee, I am committed to safeguarding the PDB and delivering the highest quality of service to our Users around the world.

Yours Faithfully,

Stephen K. Burley, M.D., D.Phil.
Director, RCSB PDB
University Professor and Henry Rutgers Chair
Rutgers, The State University of New Jersey
Adjunct Professor
University of California, San Diego

PDB ARCHIVE SNAPSHOT: JANUARY 1, 2017

125,463 entries

Holdings by Molecule Type

<table>
<thead>
<tr>
<th>Molecule Type</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins, peptides, and viruses</td>
<td>116,449</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>3,020</td>
</tr>
<tr>
<td>Protein/nucleic acid complexes</td>
<td>5,968</td>
</tr>
<tr>
<td>Other</td>
<td>26</td>
</tr>
</tbody>
</table>

Holdings by Experimental Technique

<table>
<thead>
<tr>
<th>Technique</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray</td>
<td>112,156</td>
</tr>
<tr>
<td>NMR</td>
<td>11,671</td>
</tr>
<tr>
<td>Electron Microscopy (3DEM)</td>
<td>1,329</td>
</tr>
<tr>
<td>Hybrid</td>
<td>103</td>
</tr>
<tr>
<td>Other</td>
<td>204</td>
</tr>
</tbody>
</table>

Related Experimental Data Files

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure factors</td>
<td>101,776</td>
</tr>
<tr>
<td>NMR restraints</td>
<td>8,993</td>
</tr>
<tr>
<td>Chemical shifts</td>
<td>2,762</td>
</tr>
<tr>
<td>3DEM map files</td>
<td>1,314</td>
</tr>
</tbody>
</table>
The PDB archive is managed by the Worldwide PDB organization (wwPDB, wwPDB.org), an international collaboration involving regional data centers in the US, Europe, and Japan.

wwPDB partners ensure that valuable structure data are securely stored, expertly managed, and made freely available for the benefit of scientists, educators, and students around the globe. wwPDB data centers work closely with community experts to define deposition and biocuration policies, and resolve data representation challenges. Structure validation standards are developed with the help of volunteer wwPDB Validation Task Forces that make recommendations and contribute software tools used to prepare wwPDB validation reports assessing the quality and accuracy of every structure stored in the PDB archive.

In 2016, 11,614 structures were deposited into the PDB by scientists working on all of the world’s inhabited continents. After deposition, wwPDB biocurators carefully review and annotate each structure, and perform numerous validation checks for the depositor before the entry is finalized for public release. Open communication is of paramount importance; wwPDB biocurators are in regular contact with depositors, working closely with them to bring the most accurate data possible into the PDB archive. Expert biocuration ensures that each PDB entry is a faithful representation of both the structure and the experiment. wwPDB biocurators review polymer sequences, small molecule ligand chemistry, cross-references to other databases, experimental methods, correspondence of atomic coordinates with primary experimental data, protein and nucleic acid polymer geometry, biological assemblies, and crystal packing following well-established wwPDB protocols. This exacting process helps to ensure that all incoming data meet community defined quality standards, thereby enabling meaningful analyses and comparisons across the entire archive.

Validation of structural data deposited to the PDB archive also helps to ensure the integrity of the peer-reviewed scientific literature. Most journals publishing newly determined 3D structures of biomolecules now require (or strongly encourage) authors to provide wwPDB validation reports along with their submitted manuscripts. Access to the wwPDB validation reports helps both referees and editors better evaluate the science and improve publication quality. After structure release, these same wwPDB validation reports are publicly available, helping consumers of PDB data ensure that the structures they are studying are of sufficient quality and accuracy for their intended purpose.

wwPDB develops specialized software to streamline the functions of data deposition, validation, and biocuration while maintaining a high-quality archive. In 2016, the wwPDB OneDep system was deployed to more efficiently support structure data depositions coming from X-ray crystallography, NMR, and 3DEM experiments. OneDep provides detailed validation reports to depositors. In a recently published study, data in the PDB showed improved quality of structures deposited using the wwPDB OneDep system versus structures deposited with legacy systems, demonstrating that introduction of the new wwPDB validation reporting system is having the intended impact.
The RCSB PDB website (RCSB.org) provides rich structural views of biological systems to enable breakthroughs in scientific inquiry, medicine, drug discovery, biotechnology, and education.

In 2016, RCSB.org supported more than 1 million Users from around the world by providing access to a diverse array of tools and services for structure searching, analysis, and molecular visualization.

Users can perform simple searches (e.g., ID, name, sequence, ligand) or build complex combinations of search parameters and criteria. Other classification systems are used to organize PDB data into hierarchical trees for browsing and searching (e.g., Membrane Protein Browser, Gene Ontology, Enzyme Classification).

Visualization features include Protein Feature View (a graphical comparison of a PDB sequence with UniProt and other annotations) and Gene View (an additional graphical tool that illustrates the correspondences between the human genome and 3D structure).

As the official wwPDB archive keeper, the RCSB PDB has the added responsibility of safeguarding the PDB archive and maintaining the PDB FTP data access system (ftp wwPDB.org). Weekly updates of the PDB archive and the RCSB PDB website are coordinated by the RCSB PDB with the wwPDB data centers in Europe and Japan.

In addition to the website (RCSB.org), RCSB PDB provides PDB data and services via the FTP server (ftp.RCSB.org) and numerous Web Services. Several software libraries are made available as open source on GitHub.

Visualization and Analyzing PDB Data on RCSB.org (Selected Features)

RCSB PDB tools can support visualization and access to extremely large molecular machines, such as the Faustovirus, the largest known virus (PDB ID 5j7v).

RCSB PDB tools can search for drugs and drug targets. Visualization tools allow for complex analysis of the drug binding site. Shown COPD drug tiotropium bound to the Muscarinic acetylcholine receptor M3 (PDB ID 4u15).

Mutations in a gene can have profound effects on the function of a protein. RCSB tools allow users to map the locations of the SNPs onto proteins. Shown is the PDB structure 1jm7 with highlighted cysteine 64 with zinc ion (purple) aligned to it, forming a part of the zinc finger domain. A mutation on the BRCA1 gene leads to replacement of the cysteine by glycine, which has been linked to breast cancer formation.

RCSB PDB Validation Reports provide an assessment of the quality of a structure. Concerns are highlighted by considering the atomic coordinates, experimental data and fit between the two. RCSB PDB visualization tools allow users to map validation report information onto the 3D structure. The PDB structure 3wy6 shown on the left top has a good density fit; The PDB structure 1ej1 shown below has areas with problematic fit.
PDB-101 (pdb101.rcsb.org) is an online portal designed for teachers, students, and the curious public to promote exploration of the world of proteins, DNA, and RNA. Learning about the diverse shapes and functions of these biological macromolecules promotes understanding of all aspects of fundamental biology, biomedicine, and energy.

Molecule of the Month
This popular series presents short accounts describing selected molecules from the PDB archive that highlight the structure and function of the molecule and its relevance to health and welfare. More than 200 articles are available, ranging from Actin to Zika.

In 2016, the most heavily-accessed PDB-101 articles included catalase, hemoglobin, lysozyme, green fluorescent protein, alcohol dehydrogenase, penicillin-binding proteins, ribosomal subunits, ferritin, insulin, and the acetylcholine receptor.

August’s 2016 feature on Quasisymmetry in Icosahedral Viruses marked the 200th installment of Molecule of the Month. Several resources accompanied this article to celebrate the milestone. They included the Quasisymmetry in Icosahedral Viruses activity for building several paper models of viruses to explore how quasisymmetry is used to build capsids with different sizes. In the poster 200 Icosahedral Viruses from the PDB, two hundred virus structures are arranged by size and colored by the number of protein chains in each capsid.

Focus on Public Health: Diabetes
PDB-101 resource development is heavily focused on global health concerns. In 2016, curricular modules and other educational materials were made available to promote better understanding of insulin and diabetes at the molecular level.

The insulin paper model (top) and the Insulin and Diabetes poster (fragment, middle) were some of the resources available to high school students participating in the 4th edition of the national video challenge Structural Biology and Diabetes. The winning video (bottom) from West Windsor-Plainsboro High School in NJ describes how insulin and glucagon regulate blood sugar levels.

Materials for Learning
A variety of materials to support exploration are available, including videos, posters, animations, and even a crossword puzzle.

A unique coloring book Discovering Biology Through Crystallography focused on the diverse 3D shapes and functions of biological molecules was created with grant support from the American Crystallographic Association and distributed to schools and science festivals. Bulk copies may be requested for use in outreach and education at bit.ly/2m18avx

New animation Molecular Views of HIV Therapy uses PDB structures to show how antiretroviral drugs inhibit essential viral enzymes.
ZIKA VIRUS
DAVID S. GOODSELL

Zika virus is shown in cross section at center left. Visible on the periphery are envelope proteins (pink) and membrane proteins (magenta) embedded in a lipid membrane (light purple). Within the interior of the virus, the RNA genome (yellow) is associated with capsid proteins (orange).

Two viruses are shown interacting with cell surface receptors (green) and are surrounded by blood plasma proteins outside the cell.

This painting was recognized by the National Science Foundation (NSF) and Popular Science as one of the best science images of the year and selected as the “People’s Choice” in the illustration category for the 2017 Vizzies.

REFERENCES IN THIS REPORT

CITE THE PDB
