

Overview

Response to 2009 Major Recommendations

- Develop a coordinated 5-year plan ... balancing costs with benefits, maximizes impact, and establishes productive ties with PDB educator champions
 - Drafted

PROTEIN DATA BANK

- Work with scientific journal editors to establish a uniform requirement for author submission of the PDB validation report together with the manuscript describing the structure(s)
 - Reports created, communicating with journals
- Source of biological assembly annotation be identified, and how the biological assembly annotations are decided be documented
 - Source identified on Structure Summary page
 - Process defined in online processing manual

PROTEIN DATA BANK		15				E	0	
PDB Deposit	tions	1 Sep 2010						w.pub.org
By deposition and	Year	Total Depositions	De	posited 1	Го	Pro	cessed E	By
by deposition and			RCSB	PDBj	EBI	RCSB	PDBj	EBI
processing site	2000	2983	2445	10	528	2297	158	528
	2001	3286	2673	118	495	2408	383	495
*(2010 projected)	2002	3563	2769	289	505	2401	657	505
	2003	4830	3488	673	669	3135	1026	669
	2004	5508	3796	900	812	3083	1613	812
	2005	6678	4507	1166	1005	3563	2110	1005
	2006	7282	5145	1052	1085	4252	1945	1085
	2007	8130	5399	1603	1128	4703	2299	1128
	2008	7073	5452	648	973	4106	1994	973
	2009	8300	6715	527	1058	5069	2173	1058
	2010	5928 (*8754)	4701	368	859	3766	1303	859
	TOTAL	63561	47090	7354	9117	38783	15661	9117
By experimental type *(2010 projected)	1917 1917 1975	ray MR 82.66 6.66 6.66 6.66 6.66 6.66 6.66 6.6	1987 1988	1990 11991	1993 - 1 1994 - 1 1995 -	1996 1998 1999	2001	2005 2006 2006 2006 2007 2009 2009 2009

wwPDB Validation Task Forces

Method-specific Validation Task Forces have been convened to collect recommendations and develop consensus on additional validation that should be performed, and to identify software applications to perform validation tasks.

X-ray

- Workshop on Next Generation Validation Tools for the wwPDB (April 2008)
- White paper nearly complete
- Members

PDE

PROTEIN DATA BANK

Paul Adams (Lawrence Berkeley Laboratory), Axel Brünger (Stanford University), Paul Emsley (University of Oxford), Robbie Joosten (University Nijmegen Medical Centre), Gerard Kleywegt (Uppsala University), Thomas Luetteke (Utrecht University), Garib Murshudov (University of York), Zbyszek Otwinowski (UT Southwestern Medical Center at Dallas), Tassos Perrakis (Netherlands Cancer Institute), Randy J. Read (University of Cambridge), Jane Richardson (Duke University), Will Sheffler (University of Washington), Janet Smith (University of Michigan), Ian J. Tickle (Astex Therapeutics Ltd.), Gert Vriend (Radboud Univ Nijmegen Medical Centre)

- **NMR**
- Meeting held September 2009
- Members
 - Gaetano Montelione (Co-Chair, Rutgers), Michael Nilges (Co-Chair, Institut Pasteur), Ad Bax (NIH), Wim Vranken (Free University Brussels), Peter Guentert (University Frankfurt), Torsten Herrmann (CNRS/ENS Lyon), Jane Richardson (Duke University), Charles Schwieters (NIH), Geerten Vuister (Radboud University), David Wishart (University of Alberta).

Overview www.pdb.org

Current and Expanding Initiatives

- Electronic help desks, discussion groups
 - New tracking system
- Demonstrations and presentations at professional meetings
 - New meetings, improved materials and assessment systems
- Personal interactions
- Workshops and posters
- Surveys

PROTEIN DATA BANK

PDB 40

Biophysical Society Meeting, 2010

PDB Depositors' Lunch, ACA 2010

PROTEIN DATA BANK	2		Overview www.pdb.org
PDB-Related	Fundi	ing	
Project	Agency	Period	Award
PROTEIN DATA BANK	NSF	03/01/09-2/28/14	\$28 million
PSI i nature StructuralBiologyKnowledgebase	NIH	07/01/10-06/30/15	\$12.5 million
EMDataBank.org Unified Data Resource for CryoEM	NIH	08/15/07-05/31/12 PI Wah Chiu	\$2 million
·			

PROTEIN DATA BANK												
Deposition Statistics												
		D	ру									
	Month	RCSB	PDBj	PDBe	RCSB	PDBj	PDBe	Total deposition				
	Jul 2009	568	37	88	429	176	88	693				
	Aug 2009	507	48	79	393	162	79	634				
	Sep 2009	613	41	105	474	180	105	759				
	Oct 2009	596	71	103	456	211	103	770				
	Nov 2009	528	52	92	399	181	92	672				
	Dec 2009	501	43	68	348	196	68	612				
	Jan 2010	538	55	106	424	169	106	699				
	Feb 2010	488	51	109	347	192	109	648				
	Mar 2010	613	39	121	485	167	121	773				
	Apr 2010	578	49	90	454	173	90	717				
	May 2010	625	49	99	512	162	99	773				
	Jun 2010	705	27	90	541	191	90	822				
[Total	6860	562	1150	5262	2160	1150	8572				
	_	80%	6%	13%	61%	25%	13%					

PROTE	D D ATA	BANK						N N	ROT	R L D P	D E B ANK
<pre>#IBGOIN_T #IBGOIN_C #IBGOIN_C atom_sit #IBNO_COL #IFORMAT_#ON_ON_ON_ON_ON_ON_ON_ON_ON_ON_ON_ON_ON_O</pre>	<pre>#IBBGIN TABLE DECLARATION atom_site fiBBGIN COLUMN_LIGT 17</pre>										
#!BEGIN_T	ABLE_DATA atom	site					K				
ATOM	1 N	_ MET	0	1 -	-38.945	118.157	160.952 1.000	156.580 N	0	1 1	
ATOM	2 CA 3 C	MET	0	1 -	-40.032	118.537	161.236 1.000	156.580 C	0	1 1	
ATOM	4 0	MET	ō	1	-42.016	118.788	162.262 1.000	199.790 O	0	1 1	
ATOM	5 CB	MET	0	1	-40.089	119.956	159.655 1.000	98.680 C	0	1 1	
ATOM	6 N	_ ALA	0	2 _	-41.813	117.704	160.294 1.000	146.870 N	0	1 1	
ATOM	7 CA	_ ALA	0	2 -	-43.109	117.046	160.389 1.000	146.870 C	0	1 1	
ATOM	80	- ALA	0	2 -	44.136	118.150	160.154 1.000	146.870 C	0	1 1	
ATOM	10 CB	- ALA	0	2 -	-43.290	116.422	161.778 1.000	37.370 C	ő	1 1	
ATOM	11 N	- HIS	ō	3 -	-43.898	118.937	159.107 1.000	124.100 N	ō	1 1	

W O R L PROTEIN	D W I D D B DATA BAN	E K					D&A F	Project			
2010 Goals Deposition pipeline – requirements and design											
	Sequence Processing	Peptide chopper	Ligand Processing	Validation	Calculated annotations (Bio Assembly)	Corrections	Submission	Progress Tracking/ Status			
User Interface	Requireme	ents	Design	Deve	elopment	Test					
An	notatior	n pipel	ine – fur	nctional	module	s delive	red				
\sum	Sequence Processing	Peptide chopper	Ligand Processing	Validation	Calculated annotations (Bio Assembly)	Corrections	Release Processing	Progress Tracking/ Status			
User Interface											
WFE/API Requirements					<u> </u>						
Development											
							100				

ROTEIN DATA BANK				D&A Projec
Ligand Valio	dation			
Ligand Chemistry				
Ligand chemistry has been summary.	checked agai with following	nst the Cher	nical Con ne coordin	nponent Dictionary. The following is a ates.
The real space R value indicat	tes that the mo	odel for ligan	d 48D does	not correlate to the structure factors.
	ld. Fe	entifier: 48D Name: (4E,6S,75 ormula: C17 H28	i,8S,9E)-7-hydi O3	roxy-8-methoxy-4,6-dimethylcyclotetradeca-4,9- dien-1-one
	Ide Fr Type	entifier: 48D Name: (4E,6S,75 ormula: C17 H28 Program	i,8S,9E)-7-hydi O3 Vei	roxy-8-methoxy-4,6-dimethylcyclotetradeca-4,9- dien-1-one
н, с Он СН,	Ide Fri Type InChl	entifier: 48D Name: (4E,6S,75 ormula: C17 H28 Program	5,8S.9E)-7-hydi D3 Ver	roxy-8-methoxy-4,6-dimethylcyclotetradeca-4,9- dien-1-one rsion Descriptor InChi=1S/C17H28O3/c1-13-10-11-15(18)8-6-4-5- 7-9-16(20-3)17(19)14(2)12-13/h7,9,12,14,16- 17,19H,4-6,8,10-11H2,1-3H3/b9-7+,13-12+h14-, 16-,17-/m0/s1
H ₃ C 0/1/1/1 CH ₃	InChi InChiKey	entifier: 48D Name: (4E,6S,75 prmula: C17 H28 Program	8,8S,9E)-7-hydr D3 Ver 1.02 1.02	roxy-8-methoxy-4,6-dimethylcyclotetradeca-4,9- dien-1-one rsion Descriptor InChi=1S/C17H28O3/c1-13-10-11-15(18)8-6-4-5- 7-9-16(20-3)17(19)14(2)12-13/h7,9,12,14,16- 17,19H,4-6,8,10-11H2,1-3H3/b9-7+,13-12+h14- 16-,17-/m0/s1 GNVGUUJMZICZND-MGPSKUMVSA-N
H ₁ C O _{Mag} CH ₁ CH ₂	InChI InChI SMILES CANONICAL	antifier: 48D Name: (4E,6S,7 prmula: C17 H28 Program InChI InChI CACTVS	5.85.9E)-7-hydi D3 Ver 1.02 1.02 3.352	Inchi=1S/C17H28O3/c1-13-10-11-15(18)8-6-4-5- 7-9-16(20-3)17(19)14(2)12-13/h7.9,12,14,16- 17.1914.6,8,10-11H2,1-3H3/b9-7+,13-12+(114- 16-,17-/m0/s1 GNVGUUJMZICZND-MGPSKUMVSA-N CO[C@H](IC=CCCCC(=0)CCC(=C/[C@H](C)[C@ @H]1(0)/c
H ₁ C O _{Mus} CH ₃ CH ₃	Ida Fr Type InChI InChIKey SMILES CANONICAL SMILES	entifier: 48D Name: (4E,6S,7 prmula: C17 H28 Program InChI InChI CACTVS CACTVS	5.85.9E)-7-hydi O3 Ver 1.02 1.02 3.352 3.352	roxy-8-methoxy-4,6-dimethylcyclotetradeca-4,9- dien-1-one rsion Descriptor InChI=1S/C17H28O3/c1-13-10-11-15(18)8-6-4-5- 7-9-16(20-3)17(19)14(2)12-13/h7,9,12,14,16- 17,19H,4-6,8,10-11H2,1-3H3/b9-7+,13-12+/t14-, 16-,17-m0/s1 GNVGUUJMZICZND-MGPSKUMVSA-N CC[C@H]1C=CCCCCC(=O)CCC(=C/[C@H](C)[C@ @H]10)/C CO[CH]1C=CCCCCC(=O)CCC(=C[CH](C)[CH]10)C
H ₃ C ^O M _H CH ₃ CH	Inchi Inchi Inchi InchiKey SMILES CANONICAL SMILES CANONICAL	entifier: 48D Name: (4E,6S,74 prmula: C17 H28 Program InChI CACTVS CACTVS OpenEye OEToolkits	.85,9E)-7-hydi O3 Vei 1.02 1.02 3.352 3.352 1.7.0	roxy-8-methoxy-4.6-dimethylcyclotetradeca-4.9- dien-1-one rsion Descriptor InChI=1S/C17H28O3/c1-13-10-11-15(18)8-6-4-5- 7-9-16(20-3)17(19)14(2)12-13/h7,9.12,14,16- 17,19H,4-6,8,10-11H2,1-3H3/b9-7+,13-12+/t14-, 16-17-/m0/s1 GNVGUUJMZICZND-MGPSKUMVSA-N CO[C@H]1C=CCCCCC(=O)CCC(=C/[C@H](C)[C@ @H]10)/C CO[C@H]1C=CCCCCC(=O)CCC(=C/[C@H](C)[C@ @H]10)/C C[C@H]1/C=C/CCCC(=O)CCC(=C/[C@H](C)[C@ H]10)/C

	TA BAI	NK							
Vork	flo	w M	lana	ger	Exa	mpl	e: Le	evel	1
ORLD	WID	E							
ROTEIN DA	TA BAN	K WOR	kflow	manag	ger				EDIT DATA LOGO
DEPOSITION SUMP	4ARY			[Level 1]	Depositior	n Summary			ANNOTATOR-TEST ANN AN
					(Refresh now)			
PROC Entri	es	Author's Co	rrections	Filtered	Entries	Entries	Requested for re	elease	Problems/Errors
								Legend	
PROC Entrie	5					excepti	on finished init	open running	waiting working restartWF
	Exp	Method	ACCESSION CODE	Coordinate Status	EXP DATA STATUS	AUTHOR RELEASE STATUS	DEPOSITION DATE	Author Initials	Associated PDB Ids
DEP ID		V DAV	3LPZ	PROC	REL	HPUB	2010-02-08	AN	1
DEP ID	0_057584	DIFFRACTI	UN						
DEP ID SEQMOD I SeqMod I	D_057584 D_057171	X-RAT DIFFRACTI X-RAY DIFFRACTI	ON 3LEE	PROC	HPUB	HPUB	2010-01-14	AN	

System Architecture–Drivers & Goals

Scope Growth

 Enable integration of new applications, now and in the future through modularity

 Support for new and hybrid experimental methodologies at the forefront of structural biology

Efficiency

 Greater automation of routine depositor and annotator tasks to support increase throughput and our deeper annotation objectives

Quality

- Integration of enhanced validation
- Interfaces that provide user feedback
- Improved standardization in annotation by moving from unified data processing practices to a fully unified worldwide software system

wwPDB Common D&A Too Project Timeline	D&A Project
Initiation Requirements Development Concept Test	Delivery
4Q 200720082009• Concept• Requirements elaboration• Define deliverables• Data flow documentation• Initial design• Technical design• Process definition• Technical proof of concept• Data model definition• Data model definition	2010 • Sequence Module • Ligand Chopper • Ligand Module • WF infrastructure • Deposition Interface design • Validation module in progress

PC ROTEIN DA			Data Out
			www.pdb.org
Ligar ^{Objectiv}	e: Beginnings of a drug vie) w	Expert Views Simple Views
BIOTIN		BTN Display Files	
TN is found in 65 untries		do Print this Page	
1. Chemical Component St	mmary 1	Share this Page	
Name	BIOTIN	 Coperior similar 	
Identifiers	5-[(3a5,45,6aR)-2-moheuahydro-1H-thiene[3,4-d]inidazei-4-y(]pentanoic acid	0	
2	5-[(3a5,45,6aR)-2-oxo-1,3,3a,4,6,6a-hexafiydrothieno[3,4-d]imidatol-4-y[pentanoic acid	Y	
Formuta	C10 H16 H2 O3 S	-	
Molecular Weight	244.31 g/mol		
Type	NON-POLYMER		
tionerc secces (openaye)	criceHistceeHitceeHitsticccoct-oloiwct-olws	Cana 3	
170071	InOn1=1/C10H16N2033/c13-8(14)4-2-1-3-7-9-8(5-18-7)11-10(15)12-9/16-7,9H,1-		
tarfal tar	5H2,(H,12,14)(H2,11,12,15)/10-,7-,9-/H0/S1/(H11-13H	- H	
THOM NEY	TEHEARKI GTYGT-SKOKAZBROC		Links to ontrips that
1 Links	Hida	Ciew in Imal	
Binding0819	Bearch for more than 90% similar small molecules in BindingDB, a public database of measured		A
	binding affinities of drug-like molecules with protein drug-targets	I Related Entries Hide	contain ligand
CNEBIO	Search ChEBL, a freely available dictionery of molecular entities that incorporates an ontological classification	Polymeric residue in 2 entries	oontanningana
Chem Solder 19	Search ChemSolder, a free access service providing a structure centric community for		
	chamists	Free sgand in 63 entries."	
CSLSCF	Search the Chemical Structure Lookup Service (CSLS), meant to work as an address book for	Encod in All anticipal total	
a Matana das 19	Chemical scructures	Touris in us situres tous.	
HIC-Unif	A freely accessible resource for structural biologists who are dealing dealing with hetero-	I Related Liganda Hide	
	compounds ("small molecules")	First staranissmars.)	Linka to related ligands
KEGG COMPOUND	Search KEGG COMPOUND for chemical substances and reactions that are relevant to life	End similar lisende:	- LINKS to related liganus
Ligand Expo	Oremical and structural information about small molecules within the structure entries	rest annuar regenese	0
PDDechem (/	Dictionary of chemical components in the PDB	asarch	
Publichem (P	pear in Publishing a component or num s molecular Libraries Roadmap Initiative with information on the historical articities of small molecules		
SuperLigands (9	An encyclopedia dedicated to a ligand oriented that integrates different information about	I Chemister Hide	Linend related externe
	drug-likeness or binding properties	Formal Charge	Ligang related externa
SuperNapten(9	Search for similar small molecules in SuperHapten, an immunogenic compound database	Atom Count 32	
		Chiral Atom Count 3 Oniral Atoms C2 C5 C4 Bond Count 33 Aromatic Bond 0	resource links
		Court	
		Count	
		Count	

	BANK			28	Data Out
Query	Refine	ment thr	ough D	rill-dowr	n
357 Structure Hits 5 Un	released Structures 187 Oliatie	ons 252 Ligand Hits 102 Web Page Hits	GO HIIIS SCOP HIIIS CATH HII	5	
Query Parameters: Text Search for: CANCER Query Refinements @					Hide
Resolution	Release Date	Experimental Method	Polymer Type	Organism	C Taxonomy
 less than 1.5 Å (13) 1.5 - 2.0 Å (115) 2.0 - 2.5 Å (99) 2.5 - 3.0 Å (66) 3.0 and more Å (29) more choices 	 before 2000 (55) 2000 - 2005 (118) 2005 - 2010 (186) more choices. 	X-RAY (321) Solution NMR (37) Neutron Diffraction (1)	 Protein (328) DNA (16) Mixed (12) RNA (1) 	 Homo sapiens (man) (247) Escherichia coli (24) Mus musculus (mouse) (17) Rattus norvegicus (rats) (15) Bos taurus (domestic cow) (1 Erwinia chrysanthemi (5) Glycine max (soybeans) (4) Other (28) 	Eukaryota (299) Bacteria (35) Unassigned (21) Viruses (2) Archaea (2)
Refine Query		Release Date		Remove Simil	ar: Select Percent Similarity
			15.3% before 20 32.9% 2000 - 20 51.8% 2005 - 20	00 (55 hits) 05 (118 hits) 10 (186 hits)	

www.pdb.org All by All Structural Alignments Operative of the sequence clusters (clust ?) The respectation by so representatives of other sequence clusters (clust ?) VWW.Addetain 1) vs. representatives of other sequence clusters (clust ?) C 1	RCSB		DB			5	7						C	Data Out	t
<section-header> All base of the second processing of th</section-header>	PROTEI	N DA	ATA BANK											www.pdb.org	1
YMUR-A (chain f) vs. representatives of other sequence clusters (chain 2) O Remix Result Chain 2 Title Peaker Secure Rund Leni 300 XOV1 YOV2 1 yiew 2323.8 (remotinescent p 0.0 493.30 0.0 493.30 yiew 232.30 1.01 222 226 22 20 77 96 1 yiew 243.40.4 YELLOW FLUORESCO 10.0 455.32 1.01 222 226 22 20 97 96 1 yiew 2457.40 (render-permutate 0.0.0 497.30 0.15 22 222 226 221 97 96 5 yiew 2457.40 (render-permutate 0.0.0 497.30 0.15 22 226 223 97 96 20 96 77 70 90 92 96 20 96 77 70 90 92 96 20 96 77 70 90 20 20 94 70	All Objec	by tive	All S Find r	Struc lovel r	c ti elat	J r tio	al nsh	A	liq	gr	mer	nt			
File Product Score Result Chain 2 Title Product Score Result Chain 2 Result	2WUR.A (cha	iin 1) vs. i	representatives of o	ther sequence c	lusters	(chain í	2)			0	I				
1 1	Rank Result	2625 B	Title Green fluorescent p	P-value Score	Rmsd	Len1	165	%ID 96	%Cov1 %	Cov2					
3 view 357.4. Red fluorescent pro 0.0 525.00 1.47 226 228 20 77 96 4 view 357.4. A local-permutate 0.0 97 96 16 62 5 view 3683.4. KillerRed 0.0 97.82 228 229 24 18 97 96 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 62 16 7 16	2 view	2JAD.A	YELLOW FLUORESCI	0.0 665.32	1.01	226	346	96	100	65	R	eprese	entative o	hains	
4 view 3683.4 Killered 0.0 407.39 0.35 226 223 99 61 62 5 view 3663.4 Killered 0.0 99.80 1.36 226 223 99 61 62 7 view 2664.0 orest 7.775-16 49.99 9.22 226 214 19 9 62 36 36 view 2664.0 0.0 97.99 62 36 36 view 2664.0 0.0 27 97 9 62 36 view 2665.0 275.97 99 62 36 17 70 95 9 44 70 95 9 44 70 95 9 44 70 95 9 44 70 95 77 9 62 73 77 9 62 73 70 9 62 73 70 9 62 73 9 9 42 70 70 9 62 73 70 9 70 70	3 view	3E5T.A	Red fluorescent pro	0.0 525.00	1.87	226	228	20	97	96		am 40	0/ 220000	200	
5 view 3683.4 Killered 0.0 9988.0 1.26 22 22 24 96 97 7 view 26647.0 green fluorescent 7.776-16 499.59 2.22 224 41 16 93 99 62 36 36 view 26647.0 green fluorescent 7.776-16 499.59 2.22 226 241 16 93 99 62 36 9 view 26547.0 2.00 22 226 64 0 27 97 0 view 265.27 2.00 22 22 64 0 27 97 10 view 164.4.4 NIDOCEN-1 0.572-7 295.62 0.01 22 22 94 70 Structure Alignment Query: (colored orange/dark grey) Subject: (colored cran/lpht grey) Protein Protein Protein 26 Similarity: 94% 90 10 10.4 Le	4 view	3EVP.A	Circular-permutate	0.0 407.39	0.35	226	223	99	61	62	11	011 40	% seque	nce	
6 view 26X/JB green fulorescentp 7.775-16-68/05 2.22 224 214 16 9 9 6 35 8 view 36X/JB Green fulorescentp 7.775-16-68/05 2.22 226 97 99 62 35 9 view 26X/JB Green fulorescentp 7.975-10 226 97 99 62 35 9 view 26X/JB Green fulorescentp 7.975-10 0.22 226 64 0 27 97 10 view 26X/JB Green fulorescentp 7.975-10 0.22 226 64 0 27 97 10 view 16X-JA NIDOCEN-1 0.575-7 295.62 0.01 220 273 9 94 70 Structure Alignment Query: (sclored orange/dark grey) Subject: (colored cran/ge/dark grey) Nidogen-1: Similarity: 273 Similarity: 273 Similarity: 278 Similari	5 view	3GB3.A	KillerRed	0.0 598.80	1.26	226	229	24	98	97	ic	lentity	clusters a	are	
? Werew 28/02.0 05/02 0.52 220 097 99 62 35 9 wiew 28/02.0 07/02 10 10 10 10 10 17 70 95 9 10 10 17 70 95 94 70 95 94 70 95 94 70 95 94 70 95 94 10	6 view	2G6Y.D	green fluorescent p	7.77E-16 489.59	2.22	226	214	18	93	98		lianod		CAT.	
Here V 2490.0 GPF-Hile non-fluores 3.06E-12 205.21 2.00 228 167 17 70 99 Jui we V 2483.4 Green fluorescent 1 7.95E-10 167.91 0.22 226 64 0 27 97 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 223 9 94 77 To view Tota.4 NIDOGEN-1 3.57E-7295.62 3.01 220 23 9 94 77 Tota.5286 Tota.52867 Journal Journ	7 view	3EVU.A	Myosin light chain k	2.89E-15 407.23	0.52	226	397	99	62	35	a	ligned		ICAI	
9 wtw Zdzsa, Green Nuorescent p. 798:10 167.97 0.22 220 94 0 2 94 0 2 94 0 2 94 0 2 94 0 2 94 0 2 94 0 2 94 0 2 94 70 10 view 164.4 NIDOGEN-1 3.57E-7 295.62 3.01 226 94 70 94 70 <	8 view	2A50.D	GFP-like non-fluores	3.06E-12 365.21	2.00	226	167	17	70	95					
In their Name Notobert Size 27 4 7 4 75 Example: Green Fluorescent Protein Size 27 4 7 4 75 Nidogen-1: similar 11-stranded Size 27 4 7 4 75 beta-barrel and internal helices Size 27 4 7 4 75 3 Å RMSD, only 9% sequence identity Size 27 4 7 4 75 Nidogen-1: component of basement membrane, no chromophore GFP and NID-1 may share common GFP and NID-1 may share common Size 27 4 7 4 75	9 view	2625.A	Green fluorescent p	7.95E-10 167.91	0.22	226	64	0	27	97				~5	
 3 Å RMSD, only 9% sequence identity Nidogen-1: component of basement membrane, no chromophore GFP and NID-1 may share common ancestor 	Examp Protein Nidogo beta-b	le: (en-1: arrel	Green Fl similar 11 and interr	uoreso -strande	ent d		Aligni Detai P-val 3.57e Score 295.6 RMSD 3.01 %Ed:	ture A ment ls: lue: i-07 i: i2):	Query: CREEN	Colore	ts d orange/dark gre SSCENT PROTEIN PDB ID: 2WU Chain ID: A Length: 225 Similarity: 94%	(v) Subject: (or NIDOGEN-) R	olored cyan/light grey) PDB ID: IGL4 Chain ID: A Length: 273 Similarity: 78%		
	 3 Å RI Nidoge membras GFP a ancestor 	MSD en-1: ne, n nd N	, only 9% s compone o chromop IID-1 may	sequence nt of bas phore share co	e ide eme mm	entit ent on	8.8% 3A Ki 392A 61 68A	GEELF ROCVA I I GWS DONI L	T GVV E OSPO SRYP AVEO GHKLE PYGAS	PILVE RVNGN DGFK YNYNS VHIEP	LD DVN VE VET VOSSOV HOT INSAMPEGY NG SITGG-EF HNVYI MADKOK YTELYNYSS-S	GHKES-VSGE PVV ENTOLH VGERTIFEKD TRGAEVTEG GERVNFKTRH V TSSSTREY	GEGDATY BRUTUNFI SYVWNNH DISYTATS DI DNYKTRAEVKFEG HP BRUVEROOFSGID NIE	CTTERLEVEWENT VITE TI PETVEYSLEP API C DT WNRI DE DEP ENGW TI ST DE DEP ENGW TI ST DE DEP NI Y GWR TI D OECAN	64.A 461.A 131.A 527.A 193.A 591.A

Outreach and Impact

www.pdb.org

Community Interactions

- Electronic help desks, discussion groups
 - New tracking system
- Demonstrations and presentations at professional meetings
- Personal interactions
- Exhibit booths
 - New meetings, improved materials and tracking systems
- Workshops, Posters
- Surveys

PROTEIN DATA BANK

www.pdb.org

<u>Students Exploring Molecular Structures</u> (SEMS) Trial Courses

Courses at Rutgers

PROTEIN DATA BANK

- Undergraduate Molecular View of Human Anatomy (2006, 2008, 2010) explored digestive system, cancer and AIDS, nervous system
- **Graduate** *Biophysical Chemistry* (2006, 2008)
- Summer internships (2006, 2008) explored digestive system, endocrine system

Planned Courses (2011-2012)

- Rutgers University
- King's College, PA
- Georgetown University, DC
- Wellesley College, MA

TEIN D7	ATA BANK	wv	ww.pdb.o
Rub	rics for	Evaluation	
Criteria	Type of Learning	Student Ability Scoring Criteria	Score
1	Knowledge	Recognizes building blocks and polymers of basic biological macromolecules. Recognizes structural features and conformation of proteins and nucleic acids.	1-5
2	Knowledge	Understands basic principles of bio-macromolecular interactions (covalent and non- covalent) and can recognize them in any given molecule or complex.	1-5
3	Knowledge	Understands the basis of biomolecular structure determination; recognizes the difference between different methods used and what can be learned from these structures	1-5
4	Skill	Can access, query and identify relevant molecular structures from the PDB	1-5
5	Skill	Can use appropriate visualization software to visualize molecular structures from the PDB. Should be able to select specific regions of the structure to highlight shape, interactions and other important details.	1-5
6	Skill	Can create clear labeled figures with legends to explain structure-function relationships and tell a molecular story	1-5
7	Knowledge/ skill	Can describe structure in words (written/oral) and provide appropriate attributions	1-5
8	Problem solving	Can search for additional information about the molecule in literature, databases and other authoritative resources	1-5
9	Application/ Creative thinking	Can compare structures of related molecules. Can relate molecular structure to biochemical, genetic or other known data.	1-5
10	Creative thinking	Can recognize unreported details about structure and discuss its implication on	1-5

RCCR	PDB		T/S	Outreach and Impact
PR	COTEIN DATA BANK			www.pdb.org
Who is Using the RCSB PDB Globally?				
 320K visits (*) from 152 countries/territories per month 				
	Detail Level: Country/Territory 😒	Visits	Individual Country/Territory performance	
1.	United States	95,747	29.80%	
2.	India	30,833	9.62%	Visits from Apr. 17 – May 16, 2010 that include at least two page views, total visits = 465K
3.	Germany	18,959	5.92%	
4.	Japan	18,054	5.64%	
5.	China	17,868	5.58%	
6.	United Kingdom	16,366	5.11%	
7.	France	9,535	2.98%	
8.	Italy	9,164	2.86%	
9.	Canada	7,982	2.49%	
10.	Spain	6,931	2.16%	

