It’s all about the structure

For more than 20 years, Brian Kobilka worked to create a portrait of a key cell receptor. Sometimes, the slow, steady approach wins.

BY LIZZIE DOCHEN

"It’s all about the structure" by Lizzie Dobchen. Published in Nature, August 2011.
Agenda

8:30 Welcome
8:45 Overview Haruki Nakamura
9:45 D&A Tool Martha Quesada
10:30 Break
11:00 Format, Raw Data, Validation Gerard Kleywegt
12:00 Lunch
1:30 NMR John Markley
2:00 EM, SAS, Remediation Helen Berman
3:00 wwPDB Organizational Update Gerard Kleywegt
 Matters Arising, Discussion
4:00 Break
4:30 Executive Session
5:30 Adjourn
Overview

Haruki Nakamura
wwPDB
September 2011- October 2012

- Continued growth of archive
- Increased use of data
- Progress in Common Tool project
- Format working group
- Planning of next archive remediations
- Task Force activities
- Outreach: PDB40; 2012 Symposium
- PI editorials in *Structure* and *Biopolymers*
- Funding
- wwPDB Foundation
PDB Depositions

By deposition and processing site

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Depositions</th>
<th>Deposited To</th>
<th>Processed By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RCSB PDB</td>
<td>PDBj</td>
</tr>
<tr>
<td>2000</td>
<td>2983</td>
<td>2445</td>
<td>10</td>
</tr>
<tr>
<td>2001</td>
<td>3287</td>
<td>2673</td>
<td>118</td>
</tr>
<tr>
<td>2002</td>
<td>3565</td>
<td>2769</td>
<td>289</td>
</tr>
<tr>
<td>2003</td>
<td>4830</td>
<td>3488</td>
<td>673</td>
</tr>
<tr>
<td>2004</td>
<td>5508</td>
<td>3796</td>
<td>900</td>
</tr>
<tr>
<td>2005</td>
<td>6678</td>
<td>4507</td>
<td>1166</td>
</tr>
<tr>
<td>2006</td>
<td>7282</td>
<td>5145</td>
<td>1052</td>
</tr>
<tr>
<td>2007</td>
<td>8130</td>
<td>5399</td>
<td>1603</td>
</tr>
<tr>
<td>2008</td>
<td>7073</td>
<td>5452</td>
<td>648</td>
</tr>
<tr>
<td>2009</td>
<td>8300</td>
<td>6715</td>
<td>527</td>
</tr>
<tr>
<td>2010</td>
<td>8878</td>
<td>6912</td>
<td>593</td>
</tr>
<tr>
<td>2011</td>
<td>9250</td>
<td>7172</td>
<td>582</td>
</tr>
<tr>
<td>2012</td>
<td>7514 *</td>
<td>5891</td>
<td>408</td>
</tr>
<tr>
<td>TOTAL</td>
<td>83278</td>
<td>62364</td>
<td>8569</td>
</tr>
</tbody>
</table>

*9768 depositions projected for 2012

Last Updated: 3 Oct 2012
2011 FTP & Rsync Entry Downloads

- RCSB PDB
 2011: 282 million
 2010: 159 million

- PDBj
 2011: 38 million
 2010: 16 million

- PDBe
 2011: 59 million
 2010: 34 million
Common Tool for Deposition and Annotation

- Sequence-annotation module v1.0 completed
- Ligand-annotation module v1.0 including new features for oligomers completed
- Workflow engine and management system running with annotation modules
- Validation module on track
- Deposition system in active development
- Cross-site data-sharing architecture in place
Format Discussions

- PDBx addresses limitations in molecular size and complexity and extensibility of existing PDB format
- Software developers committed to the production of PDBx/mmCIF for deposition by early 2013
Task Forces

Collect recommendations and develop consensus on method-specific issues, including validation checks that should be performed and identification of validation software applications.

X-ray Validation
- 2008 Workshop
- 2011 *Structure* publication
- Chair: Randy J. Read (University of Cambridge)

3DEM Validation
- 2010 Meeting
- Chairs: Richard Henderson (maps, MRC-LMB), Andrej Sali (models, UCSF)
- 2012 *Structure* publication

NMR Validation
- 2009, 2011 Meetings
- Chairs: Gaetano Montelione (Rutgers), Michael Nilges (Institut Pasteur)
- Report in progress

Small-Angle Scattering
- 2012 Meeting
- Chair: Jill Trewhella (University of Sydney)
- Report in progress
Funding

- RCSB PDB competitive renewal funded by NSF
 - January 2009 - December 2013
 - Noncompetitive 5 years renewal due in 2013
- PDBe main funding from EMBL and Wellcome Trust
 - WT: competitive grant (2010-2014)
 - EMBL: core of ~15 posts
- PDBj competitive renewal funded by JST (Japan Science & Technology Agency)
 - April 2011 - March 2014
- BMRB competitive renewal funded from the National Library of Medicine
 - NLM will no longer fund BMRB after 2014
- Established to support specific wwPDB activities
 - Advisory committee meetings
 - Outreach and education activities, including seminars and workshops
- **501(c)3 organization**
 - American, tax-exempt association dedicated to scientific, literary, charitable, and educational purposes
- Fundraising on-going
wwPDB Interactions

- wwPDB leadership
 - Regular wwPDB Foundation phone meetings
 - Additional Skype and phone meetings
 - Yearly and ad hoc face-to-face meetings

- Common Tool for Deposition & Annotation Project
 - Weekly VTC meetings
 - Semi-annual in-person meetings
 - Daily phone, email and Skype meetings

- Regular annotator exchange visits

- NMR
 - Monthly phone/VTC meetings

- EMDB
 - Biweekly phone/VTC meetings
Activities for the Coming Year

- Roll-out of D&A system
- Phasing out of PDB format
- Production of PDBx format for deposition by refinement software
- Limited archive remediation
- Joint pdb.org website
- Joint publication about developments
- Continued Task Force activity
- International Year of Crystallography
Common Deposition & Annotation (D&A) Tool

Martha Quesada
The Vision

Design Goals: Standardization, Quality and Efficiency

Supporting

- Larger and more complex biological molecules
- Expanded annotation
- Increased throughput: Automation and validation of routine submissions
wwPDB Common Deposition and Annotation Pipeline

Deposition Pipeline
- Common Deposition Interface
 - X-ray-specific
 - EM-specific
 - NMR-specific
- Data upload, Harvesting
- Client-side Editor
- Calculated annotations (PISA, SITE & LINK records, cross references, metal coordinates)
- Validation
- Submission
- Progress Tracking/ Status

Communication System

Workflow-Automation System

Annotation Pipeline
- Ligand Processing ID, Edit, Build
- Sequence Processing
- Validation
- Calculated annotations (PISA, SITE & LINK records, cross references, metal coordinates)
- Manual Annotation
- Release Processing

Green and yellow components are common for X-ray, NMR, & EM processing.
D&A Deposition Pipeline Deliverables

Deposition Pipeline

Data Harvesting

Deposition User Interface

Functional Components

Infrastructure

PDBx

NetApp Snap Mirror Data Exchange

Middleware

Python API Layer

Data Access

Process

Status

Configuration

C/C++ Apps

Fortran Apps

RDBMS

Other Services

Communication

Release Processing
D&A Annotation Pipeline Deliverables

Annotation Pipeline
- Sequence Processing
- Ligand Processing
- Manual and Automated Annotation
- Validation

Infrastructure
- PDBx
- NetApp Snap Mirror
- Data Exchange

Work Flow Manager
- Data Access
- Process
- Status
- Configuration

Communication
- Release Processing

Percentile Ranks
Processing Modules Updates

Sequence

2012 Enhancements

- Chimeric proteins supported
- Enhanced sequence match sorting
- Create new chemical definitions by splitting or merging existing definitions

➤ Unit and integration testing at all sites

Ligand

2012 Enhancements

“Productionization”

- Create new chemical definitions by splitting or merging existing definitions
- Integration with Chemical Component Dictionary
- Component archiving User Interface
 - In production at RCSB PDB & PDBj
 - Unit and integration testing at PDBe
2012 Annotation Pipeline Deliverables

Web form data entry and editing

Annotation Tasks

- Dictionary check: Validation of PDBx, mmCIF, PDBML
- Biological assemblies (PISA)
- Automated annotation
 - Site environment
 - Solvent position
 - Linkage review module
 - Secondary structure

Code was refactored where needed, Middleware & User Interfaces for review and editing were developed
Validation Module

Requirements

Validation Functional Components

Technical Components

X-ray VTF

External Software
Protein geometry – MolProbity (Richardson lab)
Ligand geometry – Mogul (CCDC)
Structure factors – Xtriage (Phenix)
Map-model fit – EDS (Uppsala)

Internal Software
Nucleic-acid validation
Crystallographic symmetry clashes
Ligand stereochemistry and assignment
Sequence validation
R-factor comparisons from common refinement programs

D&A Workflow Manager
API (wrapper) for module integration
Validation Pipeline & Report Generation Software
mmCIF/PDBx Dictionary
Deposition Pipeline

Requirements
- Deposition Pipeline
- API (wrapper) for functional components
- Internal Software
 - Load distribution
 - Harvesting (pdb_extract)
 - Webform pages
 - Validation module
 - Ligand module widget
 - Sequence module widget
 - Communication

Technical Components
- D&A Workflow System
- Webform Middleware (XML)
- API (wrapper) for functional components
- Dictionary

wwPDB Deposition Tool

wwPDB Annotators
Communication Interface

Distribution will take into account:

- Restart of a deposition session
- Depositions based on previous entries
- Advisory and funding guidelines
- Time zone, to facilitate “help” and communication
- Load balance based on resource capacity
- User preferences

Single, wwPDB-branded, point of contact for all new depositions (e.g., http://wwpdb.org/deposit)

- Look and feel of email
- Linked to web page content
EM V1.0
- Dictionary enhancements soon complete
- EM-specific interfaces being implemented
- Large data file requirements will be supported in the deposition module
- Ready for testing by end 2012

Future
- Additional visualization, data harvesting
- Validation requirements from EM VTF to be supported

NMR V1.0
- Dictionary data items in place
- Data requirements are defined and mapped for chemical shifts
- Integration of software for PDB atom nomenclature correspondence to NMR chemical shifts in place
- D&A NMR user interfaces being implemented
- Common D&A and ADIT-NMR data exchange to be implemented
- Ready for testing by end 2012
wwPDB Common D&A Tool Project

2008
- **Initiation**
 - July 21 kick off
 - Concept
 - Initial design
- **Requirements Design**
 - Requirements, Technical Design
 - Technical Proof of Concept
 - Development begins

2009
- **Development Test**
 - Development

2010
- **Delivery**
 - Delivery of 2 Modules
 - Ligand module in production
 - Remaining modules delivered and integrated into functional pipeline

2011
- Full internal integration testing

2012
- Public testing

2013

2012 Deliverable: wwPDB Common D&A System Version 1.0

- Able to process a file from deposition through annotation
- Supports all existing D&A processes and procedures
- Offers enhanced user interfaces for functional modules and deposition process (within reason)
- Provides a workflow infrastructure that enables task tracking and automation
Global Deployment Plan

Depositor Perspective

1. Release for testing by select and representative group of depositors early 2013
2. Iterative development (refinement and debugging) based on feedback
3. Expand user base and continue dual deposition input stream
4. Before the end of 2013 - switch all NEW depositions to new system. Incomplete legacy depositions to be completed in “old” systems
The wwPDB Common Tool Demo

Deposition and Annotation of 4EC0, Human hematopoietic Prostaglandin (PG) D2 synthase (hH-PGDS)

Three Ligands: Glutathione, 4-[2-(aminomethyl)naphthalen-1-yl]-N-[2-(morpholin-4-yl)ethyl]benzamide, Mg²⁺

Pfizer, USA
Common D&A Project Team

Experience, Expertise and Diverse Skills

representing the broad interests of the wwPDB
Format, Raw Data and Validation

Gerard Kleywegt
Why the PDB Format Must Go

- Problem: PDB format is almost 40 years old and does not support today’s science
 - Let alone tomorrow’s science…
- Some of the limitations
 - Max 62 chains
 - and that’s stretching it
 - Max 99,999 atoms
 - 5 ribosomes in ASU=10 PDB entries!
 - Very short chain, residue and atom names
 - 1, 3, 4 characters, respectively
 - No bond orders or chirality specified for ligands
 - No support for NMR, EM, hybrid methods, …
 - Meta-data specification cumbersome and inflexible
Towards a “new PDB format”

- 2010 – started process of defining new format, consulting many software developers
- 2011 – agreement to adopt PDBx (mmCIF) as the new format and to phase out the old PDB format
 - Commitments from CCP4, Phenix and Global Phasing (i.e., ~85% of all PDB depositions)
 - Agreement on managing development between these software providers and wwPDB
 - Established working group
 - Projected completion – January 2013
Update on “New PDB Format”

- PDBx/mmCIF Deposition Working Group
 - Goal: support deposition of X-ray structures in PDBx format
 - Participants: developers of major X-ray software packages and wwPDB staff
 - Continued virtual meetings to discuss content and representation issues
 - Paul Adams has replaced Oliver Smart as chair
 - Delivery target early 2013
Format Compatibility Plan

- Adopt a *PDB-friendly* mmCIF/PDBx style
 - All records on a single text line
 - Columns presented in standard column order
 - Tabular presentation with leading record names
 (e.g. ATOM, CELL, REFINE)
 - Method-independent features in left-most columns
 (e.g. identifiers & coordinates)
 - Method-specific features in the right-most columns
 (e.g. ADPs, NMR order/disorder parameters)
 - Continue to support PDB nomenclature semantics
 (e.g. PDB-style chains, residue numbering and insertion codes)
<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Chain</th>
<th>Residue</th>
<th>X-Position</th>
<th>Y-Position</th>
<th>Z-Position</th>
<th>Occupancy</th>
<th>B-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>GLN</td>
<td>A 39</td>
<td>24.690</td>
<td>-27.754</td>
<td>24.275</td>
<td>1.00</td>
<td>60.76</td>
</tr>
<tr>
<td>2</td>
<td>CA</td>
<td>GLN</td>
<td>A 39</td>
<td>23.581</td>
<td>-26.768</td>
<td>24.416</td>
<td>1.00</td>
<td>60.98</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>GLN</td>
<td>A 39</td>
<td>23.990</td>
<td>-25.379</td>
<td>23.905</td>
<td>1.00</td>
<td>59.98</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>GLN</td>
<td>A 39</td>
<td>25.070</td>
<td>-25.209</td>
<td>23.330</td>
<td>1.00</td>
<td>60.25</td>
</tr>
<tr>
<td>5</td>
<td>CB</td>
<td>GLN</td>
<td>A 39</td>
<td>23.136</td>
<td>-26.685</td>
<td>25.878</td>
<td>1.00</td>
<td>60.69</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>VAL</td>
<td>A 40</td>
<td>23.115</td>
<td>-24.395</td>
<td>24.122</td>
<td>1.00</td>
<td>59.58</td>
</tr>
<tr>
<td>7</td>
<td>CA</td>
<td>VAL</td>
<td>A 40</td>
<td>23.342</td>
<td>-23.010</td>
<td>23.690</td>
<td>1.00</td>
<td>57.26</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>VAL</td>
<td>A 40</td>
<td>24.000</td>
<td>-22.152</td>
<td>24.778</td>
<td>1.00</td>
<td>56.00</td>
</tr>
</tbody>
</table>
Guiding Principles for Deployment

- Preserve backward compatibility where possible
- Changes that do not fit the within the current PDB format will be implemented only if needed (e.g. to represent a large molecule)
 - Atom serial numbers
 - Chain identifiers
 - Residue names and numbers
- Continue to assign residue-level 3-letter codes even if more descriptive identifiers are adopted (e.g. for monosaccharides)
Future Support for the Current Format

- Web service to create current PDB format data files
- PDB-like report format
Validation of PDBx/mmCIF and PDBML Files

Image of a validation tool for PDBx/mmCIF and PDBML files.
PDB/RDF Format for Semantic Web

http://rdf.wwpdb.org/

Example: http://rdf.wwpdb.org/pdb/12as
Raw Data Archiving

- Participated in workshops at IUCr Madrid, ACA Boston and ECM Bergen
- Surveyed existing repositories of image data and found usage to be limited
- Converging *communis opinio* suggests image storage at synchrotron sites and institutional repositories where supported
- Assign DOIs to publicly accessible data sets and link DOIs to PDB entries
- Future: unmerged intensities and NOE peak lists
Validation by wwPDB – where are we (heading)?
Questions

- Entry-specific validation (quality control)
 - Is this model ready for archiving and publication?
 - Is this model a faithful, reliable and complete interpretation of the experimental data?
 - Are there any obvious errors/problems?
 - Are the conclusions drawn in the paper justified by the data?
 - Is this model suitable for my application?

- Archive-wide validation
 - What is the best model for this molecule/complex to answer my research question?
 - Which models should I select/omit when mining the PDB?
Validation in a Nutshell

- Compare a model to the experimental data and to the prior knowledge. It should:
 - Reproduce knowledge/information/data used in the construction of the model
 - R, RMSD bond lengths, chirality, …
 - Predict knowledge/information/data not used in the construction of the model
 - R_{free}, Ramachandran plot, packing quality, …
 - Global and local
 - Model alone, data alone, fit of model and data
 - … and if a model fails to do this, there had better be a plausible explanation!
Validation - Outline

- wwPDB strategy for validation
- Implementing the wwPDB X-ray validation pipeline
- Update on wwPDB validation plans for NMR and EM
Validation

wwPDB strategy for validation
Two Major Recent wwPDB Projects

- Development of a new joint wwPDB Deposition and Annotation (D&A) system
 - Will handle X-ray, NMR, EM, …
 - Will be used at all wwPDB sites
 - Replaces ADIT, AutoDep, EMdep, parts of ADIT-NMR
 - Public release 2013

- Validation using community-recommended methods will be integral part of new D&A
 - 2008: X-ray Validation Task Force (VTF)
 - 2009: NMR VTF
 - 2010: EM VTF
 - Implementation of recommendations in validation-software pipelines
Validation by wwPDB - Advantages

- Applies community-agreed methods uniformly
- Improves the quality and consistency of the PDB archive
- Supports editors and referees
- Helps users assess if an entry is suitable
- Helps users compare related entries
- Enables identification of outliers when mining the PDB
- Stimulates adoption of better protocols by the community
Experimental Data for Structure Papers

We are writing to address the retraction of five papers on structural studies of ATP-binding cassette (ABC) transporters—three in Science (G. Chang et al., “Retraction,” Letters, 22 Dec. 2006, p. 1875), one in the Proceedings of the National Academy of Sciences (1), and one in the Journal of Molecular Biology (2). We have much sympathy for your readers but very little for the magazine. This is not the first time incorrect structures have been published in Science (3), and it will not be the last time. We

Since February 2008, data deposition mandatory for PDB!

Storing diffraction data

SIR — Nature must consider structural biology to be of some interest to its readership, as almost every issue contains a new macromolecular structure. We there-

active-site nucleophilic called ‘disallowed’ co
glycine residues to
Mandatory Data Deposition

- This is great news!
 - Data available for all eternity
 - Even after a student/post-doc has left the lab…
 - Calculate maps
 - How credible is the density for a ligand or active site?
 - Are there any unmodelled features in the density?
 - Re-refine models
 - Re-interpret data
 - Validation using data
 - R, R_{free}, real-space fit, k_{sol}, B_{Wilson}, …
 - Assess outliers identified by coordinate-only validation methods
 - (1) genuine, but unusual feature of the structure?
 - (2) probable error in the model?
“Relative” = compared to structures of similar resolution
- Reference values and distributions will be recomputed annually

Report: Read et al., Structure 19, 1395 (2011)
Validation

Implementing the wwPDB X-ray validation pipeline
wwPDB X-ray Validation Pipeline

Validation pipeline 1.0 *

- MolProbity
- Xtriage
- EDS
- Mogul
- Percentiles
- PDF maker

External reference files (e.g., Engh & Huber)

Validation XML file

Deposited data (coordinates & reflections)

PDF report for depositor & referees - Statistics and plots for the entry, per chain, per residue, and list of unusual features

* WhatCheck coming soon

Validation-Software Components

Common model-validation methods, pipeline “glue”, utilities, etc.

- X-ray-specific model validation
- X-ray data and data/model fit
- NMR-specific model validation
- NMR data and data/model fit
- 3DEM-specific model validation
- 3DEM data and data/model fit
What Does it Mean for a Crystallographer?

- There will be three uses of the validation pipeline
 - At deposition time
 - Not all checks can be run, e.g. some sequence and ligand checks
 - Report for depositor
 - At annotation time
 - Complete validation report, also suitable for editors/referees
 - Independently of deposition
 - Anonymous web-based server to use on models not (yet) in the PDB
 - Will be developed once the production pipeline is up and running
 - Will not be available as a stand-alone software package
What Will a Validation Report Include?

- **Report** = summary
 - Gory details in XML file
 - Explanations on web site
- **Title page**
 - Authors, title, PDB code (if assigned), time-stamp
- **Overall quality at-a-glance**
 - Slider plots of key statistics
- "**Table 1**"
 - Key data and refinement stats
- **Entry composition**
 - Macromolecules (including sequence diagnostics, if available)
 - Ligands (including diagnostics, if available)
What Will a Validation Report Include?

- Model quality
 - Bond lengths and angles (outlier info, RMS-Z)
 - Chirality, planarity
 - Close contacts (incl. clashscore, worst clashes)
 - Torsion angles (Ramachandran, rotamers for proteins)
 - Ligand geometry (Mogul analysis)

- Model/data fit
 - Macromolecules: RSR, RSR-Z, B-factors, partial occupancies
 - Ligands: same, but RSR-Z undefined

- Residue plots
 - Residues with model-quality outliers (0, 1, 2, >2)
 - Residues with RSR-Z > 2 get a •
 - Unmodeled residues
Residue Plots

- Molecule 1: BOTULINUM NEUROTOXIN TYPE B
 Chain A:

- Molecule 2: SYNAPTOBREVIN-II
 Chain B:

- Molecule 3: SYNAPTOBREVIN-II
 Chain C:

- Molecule 1: MEMBRANE COPPER AMIDIN
 Chain A:

- Molecule 1: CELLULAR RETINOIC ACID BINDING PROTEIN TYPE II
 Chain A:
Status and Timeline

- MolProbity, EDS, Mogul, Phenix modules, nucleic-acid validation, symmetry clashes, ligand and sequence validation implemented
 - Archive coverage at present >98% (EDS ~95%)
- Production of XML file and PDF report done
- Contents and presentation/wording details of report fine-tuned with wwPDB partners and wwPDB X-ray VTF
- Integrated into new wwPDB D&A system
- Debugging of the pipeline on-going
- Internal and external testing
- Version 1.0 for public release Q1 2013
- Version 2.0 will include WhatCheck plus changes based on feedback and experience
Validation

Update on wwPDB validation plans for NMR and EM
What About Other Methods?

- Model validation using same criteria as X-ray
 - MolProbity, WhatCheck, Mogul

- Some special model-related issues per technique
 - X-ray: alternative conformations
 - NMR: ensemble of models; ill-defined regions
 - 3DEM: clashes of rigid-body fitted models; wrong species

- Data quality and model/data-fit assessment will be different for each technique
wwPDB NMR VTF Update

- Report with recommendations in preparation
- Mock-ups and specific questions sent to VTF
- Geometry validation as for X-ray
- Well-defined vs not-well-defined regions
- Treatment of NMR ensembles
- Chemical-shift validation to report completeness, outliers, referencing corrections
- Constraints validation to report number for each category (intra-residue, sequential, intermediate, long-range, inter-chain) and worst violations

NMR VTF: Montelione, Nilges et al., to be published
NMR Validation Work and Plans

- FindCore (PSVS) and NMRCore (Olderado) algorithms in place for definition of well-defined regions
- Starting adaptation of the X-ray pipeline for NMR entries (MolProbity and Mogul)
- Once the recommendations are finalised
 - Sanity checks on nomenclature for constraints and coordinates (already in place for chemical shifts)
 - Chemical shift report (referencing corrections, outliers, completeness)
 - Calculation of global and per-residue scores for geometry validation (need advice on ensemble representations)
 - Identification of constraint violations
 - Validation of RDCs and other types of experimental restraints
EMDataBank EM VTF Update

- Main recommendations for EM maps
 - Standards for assessing resolution and accuracy of a map need to be developed
 - Structural features in a map should be in accordance with the claimed resolution
- Main recommendations for models fitted into EM maps
 - Criteria for assessing models need to be developed
 - Capability to archive coarse-grained representations of models is needed
- More research and development needed!

EM Validation Work and Plans

- D&A 1.0
 - Map visual analysis (Chimera): visual sanity check of the map and map/model overlay
 - Minimal model validation à la X-ray
- Later
 - Harvest more validation-related data (e.g., results of tilt-pair analysis)
 - As new methods are developed and become community-accepted they can be incorporated into the validation pipeline
Depositions (09/15/11 – 09/14/12)

- 828 new BMRB depositions
 - 62% associated with coordinates
- 556 new combined PDB and BMRB entries
 - 40 new coordinate sets associated with earlier BMRB depositions
- 498 new depositions through BMRB
- 28 new depositions through PDBj-BMRB
- 30 new depositions through PDBe
- BMRB has handled restraint validation with help from European colleagues
Additional Activities

- Participation in the wwPDB common deposition and annotation (D&A) project
 - Interface development
 - NMR mock-up design support
 - Incorporation of NMR-STAR data items into the PDBx dictionary
 - Infrastructure development
 - NetApp data exchange
 - BMRB D&A test platform
 - Software development
 - NMR-STAR/PDBx data conversion
 - Coordinate/chemical shift atom nomenclature checker
Funding Status

- Grant (~70% of previous award) through August 2014
- Funding cuts have reduced staffing by one annotator and two programmers
- We prepared a “white paper” describing the activities of BMRB and its funding requirements, which was approved by the BMRB Advisory Board and sent to representatives of US granting agencies (NIH, NSF, and DOE)
- The white paper elicited little positive support from the granting agencies
Community Support for BMRB

- Editorial in *Nature Structural and Molecular Biology*
 - The Editor (Ines Chen) learned of the funding situation at BMRB and offered to look into writing an editorial
 - The result was an editorial plus 7 pages of testimonials from scientists in the field volunteering their strong support for BMRB
- Editorials in *Nature* and *The Scientist*
- Coverage by science bloggers
Current Plan

- We learned subsequently and indirectly that the NIGMS would accept an “R01” application for BMRB support
 - We intend to submit an application for the February 5, 2013 deadline
3D Electron Microscopy, SAS, Hybrid Methods

Helen Berman
EMDataBank: Unified Data Resource for 3DEM

- Collaborative project between PDBe, RCSB PDB and Baylor-NCMI
- "One-Stop Shop" for collection of EM maps and coordinate models
- Standardized map redistribution format
- Cross referencing between maps and models (EMDB \leftrightarrow PDB)
EMDataBank Services

- Joint map + coordinate deposition
- News, software list, information about dictionaries, conventions, FAQ, community links
- Search by ID, author, sample type, keyword, deposition date
- Recently released entries
- Map+model 3D java viewer
PDB-EMDB merger: EM to be part of Common D&A Tool

EM Data Bank joins the PDB archive

The EM Data Bank (EMDB), the primary archive for experimentally-determined maps obtained using three-dimensional electron microscopy methods, has joined the PDB archive (ftp://ftp.wwpdb.org), as announced previously.

The merger makes 3DEM results available in a single archive, including over 1300 electron microscopy derived maps from EMDB and 400 coordinates for EM map-derived models in PDB. It is also an essential step in the wwPDB’s development of a Common Deposition & Annotation Tool that will cover all experimental methods, including hybrid methods.

With the addition of EMDB data, the physical size of the complete wwPDB archive jumps to roughly 180 GB (from its previous 130 GB). Sites that mirror the full wwPDB archive will need to increase storage capacity accordingly.

Summary information regarding the merger and detailed specifications for data access are posted at wwpdb.org/em/.
EMDataBank Project Funding

- Funded by NIH, BBSRC, and EMBL
- Collaborative Grant for 3DEM Validation under review by NIH

Late breaking news!
Grant is in the 5th percentile!!
EMData Bank
Wah Chiu PI, Helen Berman and Gerard Kleywegt coPIs

Specific Aims
1. **Establish map-validation methods**
 - Use representative raw image datasets from both our laboratory and broad group of collaborators
2. **Establish model-validation methods**
 - Use map and model data from EMDB and PDB and community-contributed data
3. **Define standards for 3DEM data exchange and archiving**
 - Continue development of 3DEM terms in the EMDB data model and PDBx by adding metadata relevant to the validation procedures established above
 - Establish an agreed upon data exchange file format for maps, and develop or modify software converters to support the new and current data formats
4. **Facilitate the dissemination of 3DEM validation standards**
5. **Integrate 3DEM data standards and map and model validation into the wwPDB pipeline**
 - The map validation metadata and map-derived model-validation procedures developed through this project will be integrated into the wwPDB D&A system
SAXS/SANS Task Force

- **Members**
 - Jill Trewhella (Chair, University of Sydney)
 - Dmitri Svergun (European Molecular Biology Laboratory-Hamburg)
 - John Tainer (The Scripps Research Institute)
 - Wayne Hendrickson (Columbia University)
 - Mamoru Sato (Yokohama City University)
 - Torsten Schwede (University of Basel)
SAS Committee Charge

- Should the PDB accept (some types of) models based on SAS studies?
- If so, which types of models should be included (and which should not)?
- What are the minimum requirements for these models?
- What are the requirements regarding the supporting experimental data that need to be deposited?
- What validation procedures should be applied in the deposition and annotation process?
Preliminary Recommendations

- Develop an international repository for SAS data
- Standard dictionary required for definition of terms involved in data collection
- Shape and atomistic models based on SAS data should be archived
- Criteria for assessment of the uniqueness and quality of models needs to be defined
- Models derived from diverse hybrid data should be archived
- There is a need for key people involved in the different wwPDB VTFs to come together to discuss what the PDB should be archiving
Hybrid Methods

- Meeting planned for 2013
- Include representatives from the different task forces
Remediation

- Informs all processes
- Improves consistency in entry and archive annotation
- Enhances chemistry representation

Better query capability

Latest remediation release: July 2011
Better Annotation of Biologically Interesting Molecules

2011 remediation of inhibitors and antibiotics informed the development of an annotation system that supports

- Searches of small molecules and peptides against the new Biologically Interesting molecule Reference Dictionary (BIRD)
- 2D and 3D views
- Comparative analysis of structures
- Building new BIRD definitions
- Use of existing templates to maintain consistency in the data presentation
Remediation 2013

- Transformation of non-standard crystal frames
- Recalculation of full B factors
- Transformation of dissociated assemblies
- X-ray multiple models
Remediation 2014

- Carbohydrates
 - Data analysis completed
- Protein modifications
 - Data analysis completed
- New amino acids – selenocysteine and pyrrolysine
Carbohydrate Remediation

Issues

- Multiple representations in naming and linking
- Non-standard nomenclature and incomplete linkages
- Representation of branched polymers

Goal

- Represent data consistently within the archive, in agreement with glycobiology community standards
- Enable searches for carbohydrates in the PDB archive

Plan

- Identify and analyze carbohydrate-containing entries
- Create standard representation for branched polymers
- Incorporate standard nomenclature
- Create a strategy for remediation
Carbohydrate Remediation Scope

Number of Saccharides in Chemical Component Dictionary

Number of PDB entries with carbohydrates

Protein

Protein

Protein

Protein

Protein

Protein, DNA, RNA

Protein, DNA, RNA

Protein

Protein

Protein
Carbohydrate Remediation Plan

- Represent carbohydrate molecules as polymers of monosaccharides as appropriate
- Adopt glycobiology community standard nomenclature (LINUCS and IUPAC)
Protein Modifications

Issue
- Inconsistent annotation of PMs in the archival files results in the inability to search for these important structures

Goal
- To identify, classify, and represent all natural protein modifications consistently within the PDB archive and mutually mapped to UniProtKB

Scope
- Chemically modified ribosomal protein including post-translation
Remediated Data

wwPDB Common D&A System

Carbohydrates

Protein modifications
Putting it all together

2013 is the start of the big transition
Coordinated Transition

Deposition & Annotation
1. Annotation running at all sites
2. Deposition alpha-2 stage at all sites
3. Deposition functional at all sites
4. Old Deposition system operation as normal
5. Old Deposition system – no new depositions allowed
6. Old annotation system still active
7. Old weekly release
8. New weekly release

Format
1. PDBx Working Group to finalize work
2. Release example new style mmCIF files for ribosomes
3. Start accepting new style format depositions
4. Release server to produce best-effort PDB-format files
5. Community outreach about format developments
6. Stop supplying PDB files in ftp archive

wwPDB Website(s)
1. Announce upcoming changes to the world
2. Unveil new pdb.org website and ftp site
3. Unveil expanded wwpdb.org

Archive
1. Reformat PDBx/mmCIF data files in archive to conform to new style guidelines
2. Remediate “low-hanging fruit”
3. Remediation of carbohydrates and PTMs
4. Introduce versioned entries
wwPDB Organizational Update

Gerard Kleywegt
wwPDB Organisation

- Original wwPDB charter expires in 2013
wwPDB Organisation

- New wwPDB charter 2013
 - Separate principles and implementation details
 - Principles in charter – about wwPDB
 - Updated from 2003 text and circumstances
 - To be signed by PIs and heads of parent institutes
 - Covers 2013-2023, with review possible in 2018
 - Details in appendix – about PDB
 - Updated from 2003 text and circumstances
 - To be signed by PIs
 - Can be modified at any time by mutual agreement
wwPDB Organisation

- wwPDB Advisory Committee
 - “Re-form and reform” in 2013
 - New Terms of Reference to specify:
 - Remit/scope of advice
 - Meetings/reports
 - Membership – who/how long/chair
 - Representatives of wwPDB partners
 - Community representatives
 - Geographical representatives
 - Observers
 - Funding agencies, publishers, *etc.*; wwPDB staff
Discussion Points

- New Terms of Reference
- New wwPDB charter
- Transition strategy