2021 wwPDB AC Meeting

Tuesday, October 19, 2021
14:00 - 16:30 UK Time
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Participant(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00 (UK Time)</td>
<td>Welcome and Introductions</td>
<td>Ardan Patwardhan</td>
</tr>
<tr>
<td>14:10</td>
<td>Executive Session No. 1</td>
<td>Breakout Room via Host</td>
</tr>
<tr>
<td>14:30</td>
<td>Discussion/Questions for AC</td>
<td>All</td>
</tr>
<tr>
<td>15:30</td>
<td>Executive Session No. 2</td>
<td>Breakout Room via Host</td>
</tr>
<tr>
<td>16:00</td>
<td>Feedback to wwPDB Leadership</td>
<td>All</td>
</tr>
<tr>
<td>16:20</td>
<td>Acknowledgements</td>
<td>Ardan Patwardhan</td>
</tr>
<tr>
<td>16:30</td>
<td>Group Photo/Meeting Close</td>
<td>All, Photo via Host</td>
</tr>
</tbody>
</table>
Welcome and Introductions

Ardan Patwardhan
Executive Session No. 1

Host will add Advisors into Zoom Breakout Room

Please rejoin us at the end of your discussion by selecting *Leave the breakroom* (lower righthand corner)
Discussion/Questions for AC
Questions for Advisors Overview

1. Does the Advisory Committee have any questions regarding our responses to the 2020 AC report? (AP/GK)

2. Does the Advisory Committee have any questions/concerns regarding individual wwpPDB member 2021 AC reports? (GK)

3. Does the Advisory Committee concur with our updated plans to engage with the relevant structure prediction and experimental data resources to accelerate development of the wwpPDB data federation, employing community data standards and distributed archiving? (SV)

4. Does the Advisory Committee concur with our goal of engaging the community to develop general, statistically rigorous tools for validation of both experimental structures (e.g., MX, 3DEM, NMR, I/HM) and computed structure models? (JCH)

5. Next Advisory Committee Meeting Hosted by RCSB PDB: format/scheduling? (SKB)
Advisor Question #1

Does the Advisory Committee have any questions or concerns regarding our responses to the 2020 AC report?
Advisor Question #2

Does the Advisory Committee have any questions/concerns about individual wwPDB member 2021 AC reports?
Advisor Question #3

Does the Advisory Committee concur with our updated plans to engage with the relevant structure prediction and experimental data resources to accelerate development of the wwPDB data federation, employing community data standards and distributed archiving?
Advisor Question #4

Does the Advisory Committee concur with our goal of engaging the community to develop general, statistically rigorous tools for validation of both experimental structures (e.g., MX, 3DEM, NMR, I/HM) and computed structure models?
Advisor Question #5

2022 wwPDB AC will be hosted by RCSB PDB

Would the Advisory Committee prefer a face-to-face meeting in Piscataway, NJ (pandemic permitting)?

Which date would the Advisory Committee prefer?

Friday October 14th 2022

Friday October 21st 2022
Executive Session No. 2

Host will add Advisors into Zoom Breakout Room

Please rejoin us at the end of your discussion by selecting *Leave the breakroom* (lower righthand corner)
Feedback to wwPDB Leadership
Acknowledgements

Ardan Patwardhan
Group Photo
Meeting Close
Thank you

Molecular Landscapes: E. coli
Advisor Question #3

Does the Advisory Committee concur with our updated plans to engage with the relevant structure prediction and experimental data resources to accelerate development of the wwPDB data federation, employing community data standards and distributed archiving?

wwPDB is Responding to a Changing BioData Ecosystem:

• Multiple data centers have emerged for various types of data repositories (e.g., MX diffraction images, computed structure models).

 wwPDB Plan: Promote development of common standards and APIs for data exchange that support delivery of common data items.

• Stand alone servers are now supporting *de novo* protein structure prediction without archiving (e.g., GoogleCollab, RoseTTAFold, ...).

 wwPDB Plan: Promote and further develop existing ModelCIF standard for delivery of common data items, and encourage preservation of “published” computed structure models for reference and reuse, possibly using ModelArchive.
Structure Data EcoSystem

CORE ARCHIVES
PDB (PDB-DEV), EMDB, BMRB

CORE MEMBERS
RCSB PDB, PDBe, PDBj, EMDB, BMRB

ASSOC. MEMBERS
PDBc, PDBi

Translation layer

Standardised access to data.
Work with the individual resources to standardise data model
Structure Data EcoSystem

- Data resources related to experimental data archiving.
- Represent candidates for becoming federated resources

- Standardized access to data.
- Work with the individual resources to standardize data model

- A generic data resource used for archiving raw experimental data

- SASBDB will be the first federated archive as wwPDB has already establish data exchange standards and implemented a transparent mechanism for data deposition via OneDep.
- PDBe a grant to establish a similar mechanism with PRIDE. wwPDB plans to work with EMPIAR to do the same.
- Where there are multiple resources for archiving same type of data (e.g., SBGRID, IRMCC and XRDA archiving raw diffraction images,) we will work with these data resources to establish common data standards and data access mechanism.
- In the case of computed structure models, there are already efforts in EU to standardise data model and data access via 3d-beacons collaboration (3d-beacons.org), which may be considered in this context.
Advisor Question #4

Does the Advisory Committee concur with our goal of engaging the community to develop general, statistically rigorous tools for validation of both experimental structures (e.g., MX, 3DEM, NMR, I/HM) and computed structure models?

wwPDB seeks to advance the rigor and utility of 3D structure information:

- Use of Bayesian methods could put 3D structure validation on a statistically more rigorous footing (i.e., current wwPDB validation system has various limitations due to nature of data distributions, etc.).

 wwPDB Plan: Promote the development of community standards for the application of Bayesian principles to validation of experimental structures/computed structure models.

- Emerging structure prediction resources present new challenges to interpretation and utilization similar to the challenges posed by I/HM (e.g., low resolution 3DEM structure versus computed structure model).

 wwPDB Plan: Promote the development of common approaches for validating experimentally determined structures and computed structure models with community stakeholders.
Pre-Meeting Review Slides
Funding Update

Ardan Patwardhan
wwPDB Member Core Funding

- RCSB PDB: Joint NSF/NIH/DOE funding renewed: 2019-2023
- BMRB: NIH NIGMS funding: 2019-2023
 - Inadequate budget: still need to find additional support
 - UConn funding 25% administrative assistant and 25% project manager positions
 - NIH U24 submitted but not funded. Re-submitted 9/21
- PDBe: EMBL-EBI, Wellcome Trust: 2021-2025
- PDBj: NBDC-JST and AMED funding: 2019-2022
 - Additional budget from S. Korea (decision pending due to COVID-19)
- EMDB: EMBL-EBI, Wellcome Trust: 2019-2024
- RCSB PDB/PDBe: Joint NSF/BBCRC NextGen Archive funding: 2020-2022
- RCSB PDB/PDBe: Joint NSF/BBCRC Mol* Visualization funding: 2021-2024
Governance Update

Stephen K. Burley
New wwPDB Charter Signed

- Effective Date January 1 2021
- Admitted EMDB
- Established the framework for admission of PDB China and PDB India as Associate wwPDB Members (with roadmap for transition to Full Membership)
- Adopted Creative Commons CC0 1.0 Universal License for all wwPDB Core Archives
PDB China Update (PI/co-PI: Profs. Wenqing Xu, James Z. Liu, Quan Wang)

• The National Facility for Protein Science in Shanghai (NFPS), the primary host of PDB China, has purchased computational hardware dedicated to PDB China and performed related infrastructure set up;
• NFPS has recruited/formed the Data-in team (5 people) and the joint Data-out team (5 people, in collaboration with the ShanghaiTech University);
• PDB Japan obtained funding to purchase the computers for PDB China’s first OneDep data-in system (to be sited in Osaka); equipment just arrived; remote data-in training will start soon;
• The first version of the PDB China data-out system, with primary search functions, has been developed, and is under test and further development;
• Dedicated future funding for protein structure databank research from MOST (Ministry of Science and Technology of China) can be expected for 2022-2026. More funding from other funding resources, including those from the Shanghai government, the ShanghaiTech University and NFPS, can be expected. No funding concerns.
PDB India Update (PI/Co-PI: Prof. M. Bansal, Prof. K. Sekar, Dr. D. Mohanty)

• First phase funding (Oct 2019-2022) received from NSM(India) for hiring staff, but planned second phase support for procurement of servers/storage has not materialized yet.

• PDBi PIs have made arrangements to utilize servers/storage of the Indian Biological Data Center (IBDC) which will be operational by December 2021. IBDC is a facility funded by DBT, India and efforts are underway to secure PDBi funding from DBT for 2022-2027.

• Six PDBi staff are currently working on development of structural bioinformatics software for comparative analysis of Protein-DNA complexes in PDB, structure-based analysis of PPI network of M.Tb./Plasmodium and integrating other structure analysis software with a local FTP mirror of PDB coordinate files.

• Discussions have been held with PDBe (Dr. Velankar) for online remote training of two PDBi staff on annotation/curation of structural data after securing required permissions from EBI/wwPDB PIs.
Outreach Update

Ardan Patwardhan
PDB50 Celebration Calendar*

- wwPDB/ASBMB: May 4-5
- RCSB PDB/ACA: July 30-31
- RCSB PDB/ACS: August 25
- RCSB PDB/BPS: October 6
- PDBe/EMBL: October 20-22
- RCSB PDB/Rutgers IQB: November 2
- PDBe/RCSB PDB/RSC: November 16 and 18
- PDBj/BSJ: November 24

* All events virtual
OneDep Update

Genji Kurisu, PDBj
wwPDB Collaboration Resource November 2020-October 2021

<table>
<thead>
<tr>
<th>wwPDB Partner</th>
<th>Software Development</th>
<th>Production Maintenance / Management</th>
<th>Requirements Setting/Testing</th>
<th>Core Archive Keeping*</th>
<th>Outreach</th>
<th>Biocuration/Remediation</th>
<th>Total FTE Commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCSB PDB</td>
<td>2.0**</td>
<td>1.3</td>
<td>0.35/0.35</td>
<td>2.0</td>
<td>0.3</td>
<td>6.3</td>
<td>12.6</td>
</tr>
<tr>
<td>PDBe</td>
<td>1.4**</td>
<td>1.0</td>
<td>0.35/0.35</td>
<td>-</td>
<td>0.2</td>
<td>5.0</td>
<td>8.3</td>
</tr>
<tr>
<td>PDBj</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2/0.2</td>
<td>-</td>
<td>0.1</td>
<td>4.5</td>
<td>5.8</td>
</tr>
<tr>
<td>BMRB</td>
<td>0.95</td>
<td>-</td>
<td>0.1/0/1</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
<td>1.85</td>
</tr>
<tr>
<td>EMDB</td>
<td>0.9</td>
<td>0.35</td>
<td>0.1/0.2</td>
<td>0.3</td>
<td>-</td>
<td>0.5</td>
<td>2.35</td>
</tr>
<tr>
<td>Total wwPDB</td>
<td>5.65</td>
<td>3.05</td>
<td>2.3</td>
<td>2.8</td>
<td>0.6</td>
<td>16.5</td>
<td>30.9</td>
</tr>
</tbody>
</table>

*RCSB PDB; EMDB; BMRB

**Excluding additional resource from BBSRC/NSF joint grant, 1.0 FTE at PDBe and 1.3 FTE at RCSB PDB
OneDep 2020/2021 Progress vs. Goals I

- Our familiar Table is here, and details are in Reference.

Ref. Appendix XXX

Delivered,
To be delivered,
Delayed
OneDep 2020/2021 Progress vs. Goals II

Major Projects

<table>
<thead>
<tr>
<th>Implement NMR restraint validation</th>
<th>BMRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve EM map validation</td>
<td>EMDB</td>
</tr>
<tr>
<td>Provide mmCIF formatted validation report</td>
<td>RCSB PDB</td>
</tr>
<tr>
<td>Upgrade 3rd party EDS software in validation package</td>
<td>PDBe</td>
</tr>
<tr>
<td>Refactor NMR chemical shifts validation</td>
<td>BMRB</td>
</tr>
<tr>
<td>Improve NMR and EM depositions</td>
<td>PDBj/EMDB</td>
</tr>
<tr>
<td>Enable author-annotated assembly</td>
<td>PDBe</td>
</tr>
<tr>
<td>Establish global Biocuration training/quality assessments</td>
<td>RCSB PDB/PDBe/PDBj</td>
</tr>
<tr>
<td>Improve assembly review processes provided by biocurators</td>
<td>PDBe</td>
</tr>
<tr>
<td>Improve OneDep installation and documentation</td>
<td>PDBe/RCSB PDB</td>
</tr>
<tr>
<td>Planning for ligand ID and PDB ID extension</td>
<td>RCSB PDB</td>
</tr>
<tr>
<td>PTM remediation</td>
<td>PDBe</td>
</tr>
<tr>
<td>3DEM validation reports recalculation</td>
<td>EMDB/PDBe</td>
</tr>
<tr>
<td>Present graphical outliers of NMR validation at deposition</td>
<td>BMRBj/BMRB</td>
</tr>
</tbody>
</table>

Ad hoc projects:
- Support EBI server upgrade (ongoing)
- Entry PI contact information made public
- Better support of extended mmCIF SF data from structure determination software

Bold: re-forecasted to 2021-2022
*PTM remediation re-forecasted to 2023
wwPDB Biocurator Productivity

- Record high on 15436 depositions in 2020
- Better automation for biocurating incoming depositions
 - Based on existing structure annotations (where possible)
 - Median processing time/entry reduced for large and/or complex entries (3-4 days to <2 days)
wwPDB Collaboration Resources

November 2021-October 2022

<table>
<thead>
<tr>
<th>wwPDB Partner</th>
<th>Software Development</th>
<th>Production Maintenance/Project Management</th>
<th>Requirements Setting/Testing</th>
<th>Core Archive Keeping*</th>
<th>Outreach</th>
<th>Biocuration/Remediation</th>
<th>Total FTE Commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCSB PDB</td>
<td>2.8**</td>
<td>1.3</td>
<td>0.35/0.35</td>
<td>2.0</td>
<td>0.3</td>
<td>6.3</td>
<td>13.4</td>
</tr>
<tr>
<td>PDBe</td>
<td>1.4**+0.8#</td>
<td>0.6</td>
<td>0.2/0.2</td>
<td>-</td>
<td>0.2</td>
<td>4</td>
<td>7.4</td>
</tr>
<tr>
<td>PDBj</td>
<td>0.9***</td>
<td>0.4</td>
<td>0.2/0.2</td>
<td>-</td>
<td>0.1</td>
<td>4.5</td>
<td>6.3</td>
</tr>
<tr>
<td>BMRB</td>
<td>0.95</td>
<td>-</td>
<td>0.1/0.1</td>
<td>0.5</td>
<td>-</td>
<td>0.2</td>
<td>1.85</td>
</tr>
<tr>
<td>EMDB</td>
<td>1.15</td>
<td>0.5</td>
<td>0.1/0.1</td>
<td>0.35</td>
<td>-</td>
<td>1.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Total wwPDB</td>
<td>8.0</td>
<td>2.8</td>
<td>1.9</td>
<td>2.85</td>
<td>0.6</td>
<td>16.2</td>
<td>32.35</td>
</tr>
</tbody>
</table>

*RCSB PDB; EMDB; BMRB

**Including additional resource from BBSRC/NSF joint grant, 1.0 FTE at PDBe and 1.3 FTE at RCSB PDB

***PDBj has a plan to add 0.5 FTE for OneDep development from April 2022

#New hire at PDBe to work on PTM remediation project; Will start in Jan/Feb 2022
OneDep 2021/2022 Goal Setting

<table>
<thead>
<tr>
<th>Components</th>
<th>Major Projects to be Completed</th>
<th>Primary resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation</td>
<td>Upgrade 3rd party EDS software</td>
<td>PDBe</td>
</tr>
<tr>
<td></td>
<td>Refactor NMR chemical shifts validation software</td>
<td>BMRB</td>
</tr>
<tr>
<td></td>
<td>Validation report re-generation for X-ray and NMR entries</td>
<td>PDBe</td>
</tr>
<tr>
<td>Deposition</td>
<td>Extend/improve collection of EM auxiliary data</td>
<td>EMDB</td>
</tr>
<tr>
<td></td>
<td>Streamline EM data model</td>
<td>EMDB</td>
</tr>
<tr>
<td></td>
<td>Improve EM metadata checking/validation</td>
<td>EMDB</td>
</tr>
<tr>
<td></td>
<td>Enable author-annotated assembly</td>
<td>PDBe</td>
</tr>
<tr>
<td></td>
<td>Present graphical outliers of NMR restraint validation</td>
<td>BMRBj/BMRB</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Improve file and data access via API</td>
<td>RCSB PDB/PDBe</td>
</tr>
<tr>
<td></td>
<td>Re-engineer file upload processes at deposition</td>
<td>PDBe</td>
</tr>
<tr>
<td></td>
<td>Support new data representation for unmerged data for X-ray entries</td>
<td>RCSB PDB</td>
</tr>
<tr>
<td>PDB Archive</td>
<td>Distribute assembly files in mmCIF format</td>
<td>RCSB PDB</td>
</tr>
<tr>
<td></td>
<td>Remediate NMR restraint files for validation report generation</td>
<td>BMRBj/BMRB</td>
</tr>
</tbody>
</table>

Bold: re-forecasted from 2020-2021
OneDep 2021/2022 roadmap

- will be further adjusted based on requirement setting
PDB Archive Update

Stephen K. Burley
Current Archive Status

• Total Entries=182,418 (as of 9/23/2021)

• Core Archive Storage
 • OneDep Sessions: ~26 TB
 • ftp(legacy + versioned): ~1.5TB
 • EMDB ftp: ~4 TB

• CoreTrustSeal certification renewed through April 2024 (CoreTrustSeal.org)

• Improved access of chemical references and information about PDB archive holdings

Anticipate 200,000 structures in early 2023!
Archive Growth in 2020

- Year-end holdings >173,000
- Record 14,044 new entries released (~22% increase versus 2019)
- ~9% growth in the archive!
- Record 2,780 new EM entries released (~40% increase versus 2019; ~20% of new 2020 entries)
PDB Chemical Reference Data

~34K Chemical Component Definitions
• 3118 new in 2020 (Up 29% over 2019)
• 6598 updated (Up 1.6x over 2019)

~1K Biologically Interesting molecule Reference Dictionary (BIRD) Definitions
• 174 new in 2020 (Up 9x over 2019)
• 130 updated (Up 60x over 2019)

Overlap with External Resources
• PubChem – 31603 (92% of CCD)
• ChEMBL – 12902 (38%)
• ChEBI – 4616 (14%)
• DrugBank – 6022 (18%)
• Pharos – 4277 (13%)
EMDB Update
Ardan Patwardhan, EMDB
Achievements in 2020

- 2020 EM-VTF meeting
- Improvements to EM validation reports
- Improvements to EM deposition
- 10,000th EMDB entry released
2020 EM-VTF meeting

- Face-to-face meeting held in January 2020 (over 40 participants)
- Productive and broad discussions on:
 - improvements to (meta-)data capture (EMDB/PDB)
 - EM validation strategy
 - improvement of wwPDB EM validation reports
- White paper in preparation (Kleywegt et al.)
Improvements to EM validation reports

- OneDep now generates EM map-only and map-model validation reports
- Reports generated upon deposition, annotation and release of an entry
- A number of EM-VTF recommendations for improvement already implemented
Improvements to EM validation reports

• Improvements to the FSC plot:
 a. FSC plot only shows '0.143', '0.5' and 'half-bit' criteria
 b. Author-provided and calculated FSC curves in one plot
 c. Resolution-estimate table re-designed for easier viewing

• Added:
 a. If half maps were deposited
 • Calculate raw map
 • Show various slices and projections of the raw map
 • Include orthogonal surface views of the raw map
 • Rotationally Averaged Power Spectrum of raw map added to RAPS plot
 b. Visualisation of map and full assembly (e.g., for viruses)
Improvements to EM deposition

- Improved upload of large files
- Better EM-data-related integrity checks
- General improvements concerning how EM-related data is collected
- A large number of historical bugs fixed
Over 10,000 EMDB entries

- Achieved in February 2020 after 18 years
- Created a poster to celebrate this milestone
- Over 16,000 entries by mid-August 2021
- Prediction: 20,000 entries in first half of 2022
- 3,830 new entries released in 2020
- 2,660 released in 2021 (until mid-August)
BRMB Update

Jeffrey C. Hoch, BMRB
Developments since 2020 Meeting

OneDep Activity

- **Completed**
 - Support for single file upload for NMR data in with NMR-STAR/NEF in OneDep

- **NMR distance and dihedral angle restraints analysis is now available through OneDep and wwPDB validation servers.**

- **On Going**
 - Installation of OneDep instance at BMRB
 - Docker method installed.
 - One script installation, PDBe working on simplifying config files.

 - Chemical shift validation code refactoring

 - Remediate restraints data available in BMRB restraints grid and copy to wwPDB FTP

 - Generate restraints validation report for the whole archive.

FTP update
Developments since 2020 Meeting

BMRB Core Archive

- Completed migration of BMRB services to UConn
- Completed migration of BMRB-related services developed in tandem with NMRFAM (RUNER, GISSMO, etc.) to UConn
- Completed migration of BMRB CS-Rosetta server to CHTC
- Implemented new MailDB to archive annotator messages (within the UConn architecture we don't control our own mail server)
- Improvements made to many internal processes and workflows as part of the migration
- Substantial packaging, speed, and error message helpfulness improvements to PyNMR-STAR library
- Website implementation of new graphical design nearly complete – full-time web developed hired
- Progress towards re-implementation of BMRB dictionary management tools in Python (replacing decades-old Visual Basic code)
- Completed and deployed M2MTool to facilitate BMRB depositions directly from inside of NMRbox
- Partnered with NMRbox to add BMRB to the NMRbox “Reboxitory” data lake
BMRB Core Archive Growth

- BMRB has released 857 new entries so far in 2021 (180 via OneDep)
- Total released entries estimated to reach ~15050 by the end of 2021.
BMRB Core Archive Growth

Total Released Entries

<table>
<thead>
<tr>
<th>Year</th>
<th>Total released</th>
<th>Yearly increase</th>
<th>Structures</th>
<th>Yearly increase</th>
<th>Non-structures</th>
<th>Yearly increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>8068</td>
<td>814</td>
<td>3953</td>
<td>536</td>
<td>4115</td>
<td>278</td>
</tr>
<tr>
<td>2013</td>
<td>8886</td>
<td>818</td>
<td>4524</td>
<td>571</td>
<td>4362</td>
<td>247</td>
</tr>
<tr>
<td>2014</td>
<td>9867</td>
<td>981</td>
<td>5182</td>
<td>658</td>
<td>4685</td>
<td>323</td>
</tr>
<tr>
<td>2015</td>
<td>10322</td>
<td>455</td>
<td>5481</td>
<td>299</td>
<td>4841</td>
<td>156</td>
</tr>
<tr>
<td>2016</td>
<td>11112</td>
<td>790</td>
<td>5977</td>
<td>496</td>
<td>5135</td>
<td>294</td>
</tr>
<tr>
<td>2017</td>
<td>11803</td>
<td>691</td>
<td>6395</td>
<td>418</td>
<td>5408</td>
<td>273</td>
</tr>
<tr>
<td>2018</td>
<td>12438</td>
<td>635</td>
<td>6666</td>
<td>271</td>
<td>5772</td>
<td>364</td>
</tr>
<tr>
<td>2019</td>
<td>13728</td>
<td>867</td>
<td>7147</td>
<td>491</td>
<td>6131</td>
<td>376</td>
</tr>
<tr>
<td>2020</td>
<td>14031</td>
<td>792</td>
<td>7458</td>
<td>337</td>
<td>6573</td>
<td>455</td>
</tr>
</tbody>
</table>
BMRB Core Archive Growth

Internet Server Traffic (Website) – All Mirrors*

<table>
<thead>
<tr>
<th>Year</th>
<th>Server requests</th>
<th>Page requests</th>
<th>File requests</th>
<th>Distinct hosts served</th>
<th>Total data transferred (TB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>39,614,021</td>
<td>5,934,563</td>
<td>946,365</td>
<td>839,596</td>
<td>16.74</td>
</tr>
<tr>
<td>2013</td>
<td>42,154,225</td>
<td>6,236,267</td>
<td>864,391</td>
<td>987,792</td>
<td>17.99</td>
</tr>
<tr>
<td>2014</td>
<td>37,703,581</td>
<td>6,124,679</td>
<td>589,180</td>
<td>1,091,830</td>
<td>25.54</td>
</tr>
<tr>
<td>2015</td>
<td>46,899,762</td>
<td>7,011,339</td>
<td>664,415</td>
<td>1,225,468</td>
<td>32.68</td>
</tr>
<tr>
<td>2016</td>
<td>54,081,884</td>
<td>7,869,456</td>
<td>1,028,193</td>
<td>1,322,094</td>
<td>36.38</td>
</tr>
<tr>
<td>2017</td>
<td>56,209,400</td>
<td>8,537,562</td>
<td>1,433,036</td>
<td>1,026,426</td>
<td>18.37</td>
</tr>
<tr>
<td>2018</td>
<td>87,818,181</td>
<td>25,523,384</td>
<td>2,415,042</td>
<td>1,330,894</td>
<td>17.75</td>
</tr>
<tr>
<td>2019</td>
<td>87,989,534</td>
<td>33,885,684</td>
<td>1,173,443</td>
<td>1,779,867</td>
<td>27.55</td>
</tr>
<tr>
<td>2020</td>
<td>83,732,415</td>
<td>22,489,261</td>
<td>1,603,535</td>
<td>1,783,602</td>
<td>47.67</td>
</tr>
</tbody>
</table>

- ~300K/day server and page requests
- BMRB has mirror sites in Italy and Japan, and PDBj-BMRB branch for deposition
- Updates to accounting methods resulted in slight changes to historical data from previous reports
BMRB Core Archive Growth

Internet Server Traffic (FTP Servers) – All Mirrors*

<table>
<thead>
<tr>
<th>Year</th>
<th>Server requests</th>
<th>Distinct files requested</th>
<th>Distinct hosts served</th>
<th>Total data transferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>2,058,066</td>
<td>1,597,183</td>
<td>5,037</td>
<td>1.1 TB</td>
</tr>
<tr>
<td>2013</td>
<td>2,018,662</td>
<td>1,503,932</td>
<td>5,494</td>
<td>1.4 TB</td>
</tr>
<tr>
<td>2014</td>
<td>1,991,174</td>
<td>1,486,165</td>
<td>4,930</td>
<td>1.6 TB</td>
</tr>
<tr>
<td>2015</td>
<td>2,185,255</td>
<td>1,655,143</td>
<td>3,915</td>
<td>0.9 TB</td>
</tr>
<tr>
<td>2016</td>
<td>5,704,287</td>
<td>1,722,143</td>
<td>5,956</td>
<td>1.7 TB</td>
</tr>
<tr>
<td>2017</td>
<td>4,862,305</td>
<td>2,335,675</td>
<td>4,226</td>
<td>4.6 TB</td>
</tr>
<tr>
<td>2018</td>
<td>4,715,647</td>
<td>2,788,527</td>
<td>3,866</td>
<td>2.0 TB</td>
</tr>
<tr>
<td>2019</td>
<td>4,845,421</td>
<td>2,423,941</td>
<td>3,908</td>
<td>5.5 TB</td>
</tr>
<tr>
<td>2020</td>
<td>FTP deprecated GLOBUS endpoint deployed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Year 2014 data includes a correction to update the file sizes.
Network for Advanced NMR

NSF Mid-scale RI2 4-year grant to UConn, UW-Madison, UGA
2 x 1.1 GHz
Virtual network of 26 NMR spectrometers in total
“AirB₀” resource discovery
Knowledgebases:
- SSNMR for biomacromolecules
- SSNMR for materials
- Solution NMR for biomacromolecules
- Solution NMR metabolomics

Potential impact for BMRB:
- All connected spectrometers will stream experimental data to a central archive, with simple opt-in for public accessibility and curation
Joint Projects Update

Sameer Velankar, PDBe
Joint NSF/BBSRC projects

- Three year projects
 - The US funding is provided by NSF and the UK funding is provided by BBSRC

- Project 1 started in Oct 2020 at RCSB and Jan 2021 at PDBe
 - Provides additional resources for OneDep development
 - Coordination with OneDep team

- Project 2 was awarded in August 2021
 - PDBe will need to complete the administrative processes at BBSRC
 - Will provide resources for development of Mol*, web-based components for displaying annotations and efficient data delivery mechanism
Project 1: OneDep and NextGen
PDB archive development

• SA1. To improve the fidelity and completeness of 3D structure data deposited into the PDB by
 • Harvesting data automatically from structure determination software packages; and
 • Streamlining the wwPDB data deposition, validation, and biocuration system.

• SA2. To improve “FAIRness” of PDB data for researchers, educators, and students by
 • Extending chemical metadata for small-molecule ligands (e.g., bound cofactors and inhibitors);
 • Incorporating enhanced descriptions of macromolecular assemblies;
 • Grouping related PDB structures into investigations for more efficient, parallel data delivery; and
 • Creating a “Next Generation” PDB data repository with up-to-date metadata.

• SA3. To modernize the IT infrastructure to futureproof PDB data management and weekly PDB archive release to the public domain by
 • Developing new application programming interfaces (APIs) and microservices infrastructure; and
 • Updating existing mechanisms for synchronization of data and software across wwPDB data centers in the US, Europe, and Asia.
Protect 1: Major Year One Activities

- SA1: Gather stakeholder content and API requirements for deposition data preparation and chemical component pre-registration, and
- SA1: Implement new deposition data preparation API for experimental metadata
 - Convened a Data Processing Subgroup of the PDBx/mmCIF Deposition Working
 - Developed ~50 new and ~100 refined definitions
 - New content supported by the STARANISO, Dials, and CCP4 program systems
 - Subgroup is arranging virtual meetings with ISPyB and SynchWeb to discuss developing API requirements for data exchange
- PDBx/mmCIF Working Group developers representing Phenix, CCP4, and Global Phasing have also implemented the delivery of complete chemical component definitions for each constituent molecule in a deposited structure.
- Working group and dictionary development activities now documented on GitHub github.com/pdbxmmcifwg and github.com/wwpdb-dictionaries
Protect 1: Major Year One Activities

• SA2: Gather stakeholder content requirements for sequence, assembly, ligand, investigation semantics, and packaging
 • Developed representation of SIFTS data in PDBx/mmCIF including residue level mapping between PBD sequences and UniProt, Pfam, SCOP and CATH. These data to be initially distributed by PDBe.
 • Accelerated the plan for PDBx/mmCIF assembly delivery in the main archive in 2022
 • In a separately funded BBSRC project, PDBe has gathered requirements for harvesting data from ligand screening projects in collaboration with ESRF and Diamond facilities
 • Developing requirements for multi-structure investigations is a major task for the coming year
Protect 1: Major Year One Activities

• SA3: Evaluate software choices for updating IT infrastructure, and
• SA3: Update IT infrastructure
 • Reached consensus on open source technology choices for container packaging (Docker), container orchestration (Kubernetes and Singularity), workflow management (Prefect), an API delivery framework (Python FastAPI) and log management (Elastic, Logstash, and Kibana (ELK)).
 • Streamlined OneDep installation and system build tooling
 • Migrated version control system from SVN to GitHub
 • Python packages published to the public PyPI packaging service
 • Prototyped scheduled task management a new workflow management system (Prefect)
 • Prototyped self-hosted deployments of Kubernetes automated using the Ansible provisioning tool
 • Initial containerized deployments of public-facing OneDep services (Docker)
 • Developed requirements for a File access API to support data exchange within and between wwPDB sites (under development)
Project 1: progress in 2021 (SA1)

- SA1 - Improve fidelity and completeness of 3D structure data deposited into the PDB

 - Ongoing work towards enabling automated creation of and upload to deposition sessions

 - Will make deposition of investigations possible via OneDep
Project 1: Progress in 2021 (SA2)

- **Background**
 - Each wwPDB site adds additional data to support their data out activities
 - Aggregating of PDB entries is only possible after the PDB weekly release
 - A NextGen FTP will be introduced which will make this additional data and add aggregated data available to users

- **First example of additional data**
 - Cross-reference to other data resources and residue level mapping to UniProt (based on the PDBe SIFTS data)

- **Added new categories to PDBx/mmCIF dictionary for SIFTS data**
 - Includes
 - Per residue mapping to external resource (i.e. UniProt, Pfam, CATH, SCOP)
 - UniProt numbering of residues (where appropriate)
 - mmCIF files with additional SIFTS data will initially be available from PDBe FTP area
Project 1: Progress in 2021 (SA3)

- Installation procedure of wwPDB OneDep documented and simplified - from 133 manual steps to single installation script

- OneDep is comprised of the following components:
 - System configuration
 - Core utilities
 - Web application and software

- OneDep system configuration
 - On-going work on simplification
 - All OneDep apps changed to support a simpler configuration
 - Required to support additional wwPDB sites

- Core utilities published to PyPi Python repository

- Web applications and software
 - Docker containers created for all public facing modules
 - Docker containers automatically built using CI/CD
 - To be deployed on Kubernetes
Project 1: progress in 2021 (SA3)

- File handling API to provide
 - Single access point for data in OneDep
 - Data exchange mechanism for OneDep
 - Groundwork for data exchange for SA2
- Initial implementation scheduled for 2021

- OneDep workflow engine
 - Currently bespoke software which is tied to individual servers
 - Investigated open source replacements which are suitable for containerisation
 - Initial implementation developed to
 - Add resilience to regularly scheduled jobs (crons)
 - Monitor memory usage for OneDep processes
 - Will initially prototype deposition workflow and assess before making a decision about using the same approach for all of OneDep
Project 2: Visualization Infrastructure

• SA1 - To augment Mol-star for seamless operation across length scales ranging from atoms to cells with multiscale structure capability by
 a. Extending existing data standards to combine atomic coordinates with multiscale structure information from integrative/hybrid methods and in-cell molecular details from advanced electron or visible light/super-resolution imaging techniques;
 b. Building tools that enable superposition/simultaneous interactive display of multiscale structures;
 c. Enabling comparisons and analyses of multiscale structures.

• SA2 - To extend 3D visualization beyond structure to include display of associated biological and functional annotations by
 a. Developing a library of web-based components for displaying structural, biological and functional annotations;
 b. Integrating Mol-star 3D display tools with complementary web-based components, such as those displaying 2D topology and 1D sequence data.

• SA3 - To extend and strengthen existing IT infrastructure underpinning Mol-star by developing an agile data delivery system that supports high-speed interactive web-based visualization of 3D structure data for comparison and analyses of multiscale structures across length scales ranging Å units to microns.