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Abstracting knowledge from structures for biology in the
past and today

Thoughts about the Future of PDB
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Personal Recollections of the PDB: 1974 - 1995
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« 127 tapes about every 3 months from
Brookhaven via Daresbury to Oxford
Lab in ~1974

Number of structures
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* Growth in number of entries (‘70s)

1972 1973 1974 1975 1976 1977 1978 1979 1980
Year

« Validation 1989 CCP4 ‘Errors in Ramachandran Plot
Protein Structures’ / PDBClean/ ' ‘
PROCHECK

» Visits to Brookhaven (Tom Koetzle,
Frances Bernstein & Enrique Abola)
as part of Scientific Advisory Board

E sesl
F OERAE

+ Challenges of data increase — move
to RCSB: Helen, Phil & Gary
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Personal Recollections of the PDB: 1995 onwards

- Establishing PDBe — grant from Wellcome Trust
(for 4 staff) to EMBL- EBI:

PROTEIN DATA BANK EUROPE

« 1995 — recruitment of Kim Henrick & Geoff Barton

+ Building relationships between PDBe & RCSB/PDBJ/BMRB 1995 - 2005

+  Kim & colleagues started to build the EMDB (2002) EMDB

EM DATA BANK

R L D W I D E

- Establishment of wvPDB WPDB

PROTEIN DATA BANK

* Recruiting Gerard (Kleywegt) — 2009
‘Bringing Structure to Biology’ ]f "lgj
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Abstracting Knowledge from the PDB

- The knowledge contributed by an individual protein
structure about how this particular protein performs
its biological function remains the most important
aspect of knowledge in the PDB e.g. Von
Willebrand Factor

- BUT additional knowledge in many areas can also be g _
e ) PDB code: lauq
abstracted by combining information over many Emsley et al (1997)
structures. In practice most proteins interact with JB.C. 273 10396
many other molecules, either as multimers or as o
parts of pathways

> Information over all or subset of PDB
entries to generate knowledge

EMBL-EBI /&



Abstracting Knowledge from PDB:
Historical perspective

+ Practical knowledge e.g. Which proteins are likely to
crystallise

- Basics Principles of Protein Structure (physics/chemistry)
- The Universe of Proteins & evolutionary relationships

« Structure to Function
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1970°s Basic Principles of Protein Structure
(Understanding Sequence to Structure)

Labz

= Properties of amino acids eg helix propensities ¥ -,
= Basic geometry of pp chain, e.g. phi,psi values - X
= Hydrophobic Core
= Secondary Structures
= Helices - geometry; length, curvature;
packing
= Strands — twist; geometry; residue pairs
= Turns — types; residue preferences
= Chirality
= Twists of sheets, Right handed Bo.f3,
Barrels

= Tools for ‘describing’ protein structures
= Secondary Structure Assignment - DSSP
= Hydrogen bonds - HBPIus
= Accessibility - NACCESS




1980°s The Universe of Protein Structures from the PDB

= Interactions: X
= Amino acid packing

= Tertiary packing — helix; sheet
= Domains & multi-domalin architectures
= Folds
= Evolution — conserved structures

= New Tools
= Visualisation
= Homology Modelling
= Simulations
= Electrostatics

®+A




1990s Folds; Classification; Interactions

N. inding
4

Protein Structure Classifications
CATH & SCOP

Interactions
— Protein—protein
— Protein-Ligand
— Protein-DNA

New Tools:

— Structure Comparison eg DAL
— Patch Analysis for PPI

— Docking

— Fold Recognition - Threading




Many of Tools now provided by PDB as searches

* PDBeMotif — to identify motifs

Priiae s
SRA AR,

T R

s B,

2> B 0

S

S —
X "f.!‘a"‘;“ﬁr‘

2TBV A trimer? l

Biological unit 2TBV
180-mer!
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Structural
Genomics
Projects
~2000

Taken from
WWW.iSgo0.0rg

Ontario Centre for SG

Montreal-Kingston Bacterial SG Initiative Canada :
Montreal Network for Pharmaco-Proteomics and SG

CyberCell Project

Structural Proteomics in Europe (SPINE) Eu Frope :
SG of Mycobacterium pathogens |
SG of Eukaryotes Fran ce |

Yeast SG

SG of Orphan E. coli Genes

Protein Structure Factory Germa ny

RIKEN SG/Proteomics Initiative

National Project on Protein Structural and Functional A Ja PaN enters)

Biological Information Research Center (BIRC)

The Korean Structural Proteomics Research Organization

Korea

National Centers for Competence in Research (NCCR)

North West SG Centre

Oxford Protein Production Facility

Cambridge Group

UK

Switzerland

New York SG Research Consortium

Midwest Center for SG

Berkeley SG Center

Northeast SG Consortium

TB SG Consortium

USA

Southeast Collaboratory for SG

Joint Center for SG

SG of Pathogenic Protozoa Consortium

Center for Eukaryotic SG

Structure 2 Function Project




From Structure to Function

Protein Structure )/

: .

Molecular Function




biological multimeric state evolutionary relationships

INTERACTIONS

MULTIMERS

SURFACE

MUTANTS & SNPs |

3D STRUCTURE

/ ELECTROSTATICS

CLUSTERS

LIGANDS

ligand & functional sites catalytic clusters, mechanisms & motifs enzyme active sites



Fold & Function

* No direct correlation between fold & function, though some
tendencies

Zhiey

DNA binding proteins tend to be helical

- Haem binding proteins tend to be helical

« Enzymes tend to adopt o} folds

- Immune-related proteins tend to be B-sheet structures e.g. Ab

- Membrane proteins are predominantly helical — apart from porins
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From Structure To Biochemical Function

However identifying sequence or structural
similarity (i.e. identifying an evolutionary
relationship) Is the most powerful route to
function assignment

BUT members of the same protein
superfamily often have a related but
not identical function



MICROEVOLUTION BY ARTIFICIAL SELECTION

Broccoli
(flower cluster) {

Cabbage
(condensed shoot)

Kohlrabi
(swollen stem
& leaf bases)

Wild cabbage

John Ellis



Aspartate Amino
Transferase Superfamily‘
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SDR Family
Short chain dehydrogenase/reductase family

>60 In humans

Catalytic Tetrad: A
S,Y,K,N N

Different Functions:

Oxidoreductases E.C. 1.1 & 1.3;
Lyases E.C. 4.3;
Isomerases E.C. 5.1

Many structures solved
Many different substrates
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- UCL Christine Orengo
lan Sillitoe, Alison Cuff

EBI Nick Furnham,
Gemma Holliday

Understanding Enzyme
Families and Evolution



Understanding Enzyme Families & Evolution

- Data
« Protein Sequences
« Protein Structures with ligands!
« Substrate Knowledge (promiscuity)
* Invitro
* Invivo
* Reaction mechanisms

- Computational tools for:
+  Sequence comparison
« Structure comparison
«  Small molecule comparison
+ Reaction comparison

- Then we need to integrate and visualise all these data!!
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EMBL-EBI

Structurally Similar Groups

CATH Domain Structure

S realigned by

]
gl Sequence (with _
functional annotation) I
Bl ———————
a—)— .
17 '| _Er
3
U
o
3 —
= Structure-Based _E
9 Alignment L '
e (CORA) with
sequences :

FugueAli

Phylogenetic Tree
(TreeFam)




The pipeline EMBL-EBI

— PROTEIN STRUCTURE CLASSIFICATION
[
Ly
' ( - 2
o S B
STRUCTURE

T PROTEIN DATA BANK EUROPE S ASSIGNED TO GENOMES

Structure and sequence alignments for
enzyme families -> Phylogenetic trees

Annotate with functional information
and small molecule data (eg substrates, mechanism)




Phosphatidylinositol-Phosphodiesterase (PI1P) Superfamily
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Phosphatidylinositol-
Phosphodiesterase Superfamily
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Phosphatidylinositol-Phosphodiesterase Superfamily-MBL-EBI:

Not in archshema as not in
reviewed uniprotkb

Gl

Not in Funtree as filtered
out by sequence similarity

E.C. Number

Difference
in substrate

Difference*
in substrate

Difference
in product

Difference in
multi-domain
architecture &

substrate

Substrate
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Phosphatidylinositol-Phosphodiesterase SuperfamilyVBL-Esi &

Not in archshema as not in
reviewed uniprotkb

Not in Funtree as filtered
out by sequence similarity
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in product

Difference in
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* Not in archshema as not in Not in Funtree as filtered E.C. Number Substrate MU Iti-domai n Architecture

reviewed uniprotkb out by sequence similarity
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Phosphatidylinositol-Phosphodiesterase Superfamily

Eukaryotes (clade 1)
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Glycerophosphodiester

Bacteria (clade 2)

1-phosphtidyl-1D-myo-inositol

EMBL-EBI

Spider venom (clade 3)
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Phosphatidylinositol-Phosphodiesterase Superfamily EMBL-EBI

Clade 3 — Gly

Clade 1 - Asp Clade 3 — Met

Clade 1 - Arg

Clade 3 — Asn
Clade 1 - Asp

Legend

Spider venom (Clade 3) — red
Eukaryote (Clade 1) - blue




Enzyme Domains & Superfamilies

To test we started with an analysis of 6 superfamilies
(based on SFLD database from Babbitt group):

Haloacid dehalogenase
Terpene Cyclases
Amidohydrolase
Crotonase

Enolase

Vicinal Oxygen Chelate

Now we have processed 2 (0 Superfamilies

The superfamilies were chosen using MACIE to
iIdentify domains with known catalytic residues.



Data Overview

The number of E.C. Codes within a superfamily

The number of ligands within a superfamily



Changes in enzyme function:-

- Which changes in enzyme function are observed?
» At which level of E.C. Code?

- How do we represent these changes?

‘ E.C. Exchange Matrix

EMBL-EBI i



E.C. Changes Using Phylogenetic Trees EMBL-EBI

EC.1 EC.2 EC3 EC.4 EC.5 EC.6

Percentage 13% 08% 06% 07% 02% | ..,
of changes 42) (28) (19)  (24) (7 "
(total
number of 126% 1.6% 16% 05% 0.5% EC 2
421 52 52 18 16 it
counts) (421)  (52) (52) (18)  (16)
08% 05% 0.2%
(27) (17) (8) EC.3
94% 1.0% 04% EC. 4
Total Number 2967 (314)  (33)  (13) o
within class
0
changes (89 /0) 24% 0.1%
(79) (4) E.C.5
'tl)'ottal Numlber 360 34% | cc6
etween class 112 e
changes (11%) o




CONCLUSIONS

New functions emerge by local domain evolution and domain fusions

- Evolution of enzyme function occurs within most superfamilies
« Changes within a class dominate — ie changes of specificity

- Changes between EC primary classes do occur, but much more
rarely — some changes are more common than expected

- Small number of families cover majority of reactions
- Small no. of primordial enzymes sufficient for life?

* Most changes in reaction chemistry are observed in very distantly
related enzymes (ancient changes?)

- Changes in specificity at leaves of trees
- Changes in reaction chemistry at ‘root’ of trees

EMBL-EBI



Challenges for the PDB (from Gerard)

Growth
«  Number, size, complexity of entries
« Hybrid, low-resolution methods
«  From molecular to cellular structural biology
« User base!

Validation

Integration

From structural biology archive to biomedical resource
« Best-practice models versus published models
« New ways of accessing and using structural information

EMBL-EBI




EMBL-EBI Databases

Genomes
Ensembl
Ensembl Genomes
EGA

Literature and ontologies
CiteXplore, GO

Protein families,
motifs and domains
InterPro

Functional
genomics
ArrayExpress
Expression Atlas

Nucleotide sequence
ENA

Macromolecular
PDBe

Protein activity
IntAct , PRIDE

Pathways
: Reactome
Protein Sequences
UniProt
Chemical entities o
ChEBI e
Chemogenomics Bsiglf/ltgorlﬁs
ChEMBL :
BioSamples

EMBL-EBI




Growth of EBI Databases 2000-2010%*

All resources are
growing rapidly

Data doubling every 5
months

12 petabytes data
storage

CHALLENGE:
DATA => KNOWLEDGE

Nucleotides (millions)

(2}
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Structures
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More Data

- Structural data:
- More data
- RNA
- Membrane proteins
* Protein complexes
- FEL Data (Dynamics)

- Other data /

 Integration of data
o ?7?

———> Heme biosynthesis pathway

Uroporphyrinogen Porphyria cutanea tarda
decarboxylase (1uro)



Data Integration: PDB®* Sequences
SIFTS

Used by:

- wPDB
-UniProt
-Pfam

v -PDBe

wwPDB Relational
Manual ﬁ DATABASE % -RSCB
curation

e _I -SCOP
Data i}:;hange _ C AT H

UniProt  Production ~ PPBe - P D B sum

Manual Automatic
curation
-

mapping
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PLEA FOR MORE FUNCTIONAL DATA IN PDB TO
FACILITATE KNOWLEDGE EXTRACTION:

Capturing knowledge learnt from structure into the PDB,
using agreed standards, vocabularies and ontologies:

- Simple things: * More complex:

+ EXxperimental protocols  Protein localisation

+ Function of protein - Catalytic site for enzyme

* Function of ligand - Binding site for receptor
eg inhibitor/crystallisation aid - Mechanism of enzyme

* Functional highlights of - Effects of Mutations
structure — biological - Interaction partners/pathway
consequences context

* Role of dynamic movement

+ Relationship to other
structures in PDB

+ Disease relationships

EMBL-EBI




THANKS to

All Structural Biologists, who deposit in PDB
Original Founders of PDB

Current and past leaders of PDB

All staff of wvPDB
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